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Any observed data representing a physical phenomenon can be broadly classified as being either de-

terministic or nondeterministic. Deterministic data are those that can be described by an explicit mathe-

matical relationship. There are many physical phenomena in practice which produce data that can be

represented with reasonable accuracy by explicit mathematical relationships. For example, the motion

of a satellite in orbit about the Earth, the potential across a condenser as it discharges through the re-

sistor, the vibration response of an unbalanced rotating machine, or the temperature of water as heat is

applied, are all basically deterministic. However, there are many other physical phenomena which pro-

duce data that are not deterministic. For example, the height of waves in a confused sea, the acoustic

pressure generated by air rushing through a pipe, or the electrical output of a noise generator represent

data which cannot be described by explicit mathematical relationships. There is no way to predict an

exact value at a future instant of time. These data are random in character and must be described in

terms of probability statements and statistical averages rather than explicit equations.

Various special classifications of deterministic and random data will now be discussed.
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1.1 Deterministic Data

Data representing deterministic phenomena can be categorized as being either periodic or non periodic.

Periodic data can be further categorized as being either sinusoidal or complex periodic. Non periodic data

can be further categorized as being either almost-periodic or transient. These various classifications of

deterministic data are schematically illustrated in Figure 1.1. Of course, any combination of these forms

may also occur. For purposes of review, each of these types of deterministic data, along with physical

examples, will be briefly discussed.

1.1.1 Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data which can be defined mathematically by a time-varying

function of the form

x(t) = X sin(ω0t + φ) (1.1)
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Deterministic

Periodic Non Periodic

Sinusoidal Complex
Sinusoidal

Almost
Periodic Transient

Figure 1.1: Classification of deterministic data

whereX is the amplitude,ω0 is the angular frequency, in units of radians per unit time1,φ is the initial

phase angle (in radians) with respect to the time origin, and x(t) is the instantaneous value at time t.

The sinusoidal time history described by (1.1) is usually referred as a sine wave. When analyzing sinu-

soidal data in practice, the phase angleφ is often ignored.

The time interval required for one full fluctuation or cycle of sinusoidal data is called the periodT . The

number of cycles per unit time is called the frequency ν.
1Not to be confused with the frequency ν, measured in Hz. The two are related byω = 2πν.



M.Orlandini Temporal Data Analysis 5

There are many example of physical phenomena which produce approximately sinusoidal data in prac-

tice. The voltage output of an electrical alternator is one example; the vibratory motion of an unbal-

anced rotating weight is another. Sinusoidal data represent one of the simplest forms of time-varying

data from the analysis viewpoint.

1.1.2 Complex Periodic Data

Complex periodic data are those type of periodic data which can be defined mathematically by a time-

varying function whose waveform exactly repeats itself at regular intervals such that

x(t) = x(t± nT ) n = 1, 2, 3, . . . (1.2)

As for sinusoidal data, the time interval required for one full fluctuation is called the period T . The an-

gular frequency is called the fundamental frequencyω. With few exceptions in practice, complex periodic

data may be expanded into a Fourier series according to the following formula (we will return later in
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greater detail on that)

x(t) =

∞∑
k=0

(Ak cosωkt +Bk sinωkt) (1.3)

withωk = 2πk/T andB0 = 0. An alternative way to express the Fourier series is

x(t) = X0 +

∞∑
k=1

Xk cos(ωkt + φk) (1.4)

In other words, (1.4) says that complex periodic data consists of a static component and an infinite num-

ber of sinusoidal components called harmonics, which have amplitudesXk and phasesφk. The frequen-

cies of the harmonic components are all integral multiples ofω1.

Physical phenomena which produce complex periodic data are far more common than those which pro-

duce simple sinusoidal data. In fact, the classification of data as being sinusoidal is often only an ap-

proximation for data which are actually complex. For example, the voltage output from an electrical

alternator may actually display, under careful inspection, some small contributions at higher harmonic
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frequencies. In other cases, intense harmonic components may be present in periodic physical data.

1.1.3 Almost-Periodic Data

We have seen that periodic data can be generally reduced to a series of sine waves with commensu-

rately related frequencies. Conversely, the data formed by summing two or more commensurately re-

lated sine waves will be periodic. However, the data formed by summing two or more sine waves with

arbitrary frequencies will not be periodic.

More specifically, the sum of two or more sine waves will be periodic only when the ratios of all possible

pairs of frequencies form rational numbers. This indicates that a fundamental period exists which will

satisfy the requirements of (1.2). Hence,

x(t) = X1 sin(2t + φ1) +X2 sin(3t + φ2) +X3 sin(7t + φ3)

is periodic since2/3, 2/7and3/7are rational numbers (the fundamental period isT = 1). On the other
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hand,

x(t) = X1 sin(2t + φ1) +X2 sin(3t + φ2) +X3 sin(
√
50t + φ3)

is not periodic since 2/
√
50 and 3/

√
50 are not rational numbers (in this case the fundamental period

is infinitely long). The resulting time history in this case will have an “almost periodic” character, but the

requirement of (1.2) will not be satisfied for any finite value ofT .

Based on these discussions, almost periodic data are those types of non periodic data which can be de-

fined mathematically by a time-varying function of the form

x(t) =
∞∑
k=1

Xk sin(ωkt + φk) (1.5)

with ωj/ωk ̸= rational numbers in all cases. Physical phenomena producing almost periodic data fre-

quently occur in practice when the effects of two or more unrelated periodic phenomena are mixed. A

good example is the vibration response in a multiple engine propeller airplane when the engines are

out of synchronization.
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1.1.4 Transient Non periodic Data

Transient data are defined as all non periodic data other the almost-periodic discussed above. In other

words, transient data include all data not previously discusses which can be described by some suitable

time-varying function.

Physical phenomena which produce transient data are numerous and diverse. For example, the behav-

ior of the temperature of water in a kettle (relative to room temperature) after the flame is turned off.

1.2 Random Data

Data representing a random physical phenomenon cannot be described by an explicit mathematical

relationship because each observation of the phenomenon will be unique. In other words, any given

observation will represent only one of the many possible results which might have occurred. For exam-

ple, assume the output voltage from a thermal noise generator is recordered as a function of time. A
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specific voltage time history record will be obtained. However, if a second thermal noise generator of

identical construction and assembly is operated simultaneously, a different voltage time history record

would result. In fact, every thermal noise generator which might be constructed would produce a dif-

ferent voltage time history record. Hence the voltage time history for any one generator is merely one

example of an infinitely large number of time histories which might be occurred.

A single time history representing a random phenomenon is called a sample function (or a sample record

when observed over a finite time interval). The collection of all possible sample functions which the

random phenomenon might have produced is called a random process or a stochastic process. Hence a

sample record of data for a random physical phenomenon may be though of as one physical realization

of a random process.

Random processes might be categorized as being either stationary or non stationary. Stationary random

processes may be further categorized as being either ergodic or non ergodic. Non stationary random pro-

cesses may be further categorized in terms of specific types of non stationary properties. These various
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Random

Stationary Non
Stationary

Ergodic Non Ergodic Special classifications
of non stationarity

Figure 1.2: Classifications of random data

classifications of random processes are schematically illustrated in Figure 1.2. The meaning and physi-

cal significance of these various types of random processes will now be discussed in broad terms.

1.2.1 Stationary Random Processes

When a physical phenomenon is considered in terms of a random process, the properties of the phe-

nomenon can hypothetically be described at any instant of time by computing average values over the

collection of sample functions which describe the random process. For example, consider the collection
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of sample functions (also called the ensemble) which form the random process illustrated in Figure 1.3.

The mean value (first moment) of the random process at some time t1 can be computed by taking the

instantaneous value of each sample function of the ensemble at time t1, summing the values, and di-

viding by the number of sample functions. In a similar manner, a correlation (joint moment) between

the values of the random process at two different times (called autocorrelation function) can be computed

by taking the ensemble average of the product of instantaneous values at two times, t1 and t1+ τ . That

is, for the random process {x(t)}, where the symbol { } is used to denote an ensemble of sample func-

tions, the mean valueµx(t1) and the autocorrelation functionRx(t1, t1 + τ ) are given by

µx(t1) = lim
N→∞

1

N

N∑
k=1

xk(t1) (1.6a)

Rx(t1, t1 + τ ) = lim
N→∞

1

N

N∑
k=1

xk(t1)xk(t1 + τ ) (1.6b)

where the final summation assumes each sample function is equally likely.
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For the general case where µx(t1) and Rx(t1, t1 + τ ) defined in (1.6) vary as time t1 varies, the ran-

dom process {x(t)} is said to be non stationary. For the special case where µx(t1) and Rx(t1, t1 + τ )

do not vary as time t1 varies, the random process {x(t)} is said to be weakly stationary or stationary

in the wide sense. For the weakly stationary processes, the mean value is a constant and the auto-

correlation function is dependent only upon the time of displacement τ . That is, µx(t1) = µx and

Rx(t1, t1 + τ ) = Rx(τ ).

An infinite collection of higher order moments and joint moments of the random process {x(t)} could

also be computed to establish a complete family of probability distribution functions describing the

process. For the special case where all possible moments and joint moments are time invariant, the

random process{x(t)} is said to be strongly stationary or stationary in the strict sense. For many practical

applications, verification of weak stationarity will justify an assumption of strong stationarity.
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Figure 1.3: Ensemble of sample functions forming a random process
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1.2.2 Ergodic Random Processes

The previous section discusses how the properties of a random process can be determined by computing

ensamble averages at specific instants of time. In most cases, however, it is also possible to describe the

properties of a stationary random process by computing time averages over specific sample functions

in the ensemble. For example, consider the k-th sample function of the random process illustrated in

Figure 1.3. The mean valueµx(k) and the autocorrelation functionRx(τ, k)of thek-th sample function

are given by

µx(k) = lim
N→∞

1

N

∫ T

0

xk(t)dt (1.7a)

Rx(τ, k) = lim
N→∞

1

N

∫ T

0

xk(t)xk(t + τ )dt (1.7b)

If the random process {x(t)} is stationary, and µx(k) and Rx(τ, k) defined in (1.7) do not differ when

computed over different sample functions, the random process is said to be ergodic. For ergodic ran-



M.Orlandini Temporal Data Analysis 16

dom processes, the time averaged mean value and autocorrelation function (as well as all other time-

averaged properties) are equal to the corresponding ensemble averaged value. That is,µx(k) = µx and

Rx(τ, k) = Rx(τ ). Note that only stationary random process can be ergodic.

Ergodic random processes are clearly an important class of random processes since all processes of er-

godic random processes can be determined by performing time averages over a single sample func-

tion. Fortunately, in practice, random data representing stationary physical phenomena are generally

ergodic. It is for this reason that the properties of stationary random phenomena can be measured prop-

erly, in most cases, from a single observed time history record.

1.2.3 Non stationary Random Processes

Non stationary random processes include all random processes which do not meet the requirements

for stationarity defined in the previous section. Unless further restrictions are imposed, the properties

of non stationary random processes are generally time-varying functions which can be determined only
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by performing instantaneous averages over the ensemble of sample functions forming the process. In

practice, it is often not feasible to obtain a sufficient number of sample records to permit the accurate

measurement of properties by ensemble averaging. This fact has tended to impede the development

of practical techniques for measuring and analyzing non stationary random data.

In many cases, the non stationary random data produced by actual physical phenomena can be classi-

fied into special categories of non stationarity which simplify the measurement and analysis problem.

For example, some type of random data might be described by a non stationary random process {y(t)}

where each sample function is given by y(t) = A(t)x(t). Herex(t) is a sample function from a station-

ary random process {x(t)} and A(t) is a deterministic multiplication factor. In other words, the data

might be represented by a non stationary random process consisting of a sample functions with a com-

mon deterministic time trend. If non stationary random data fit a specific model of this type, ensemble

averaging is not always needed to describe the data. The various desired properties can sometimes be

estimated from a single record, as is true for ergodic stationary data.



Harmonic Analysis
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Few preliminary remarks are in order: First, we will use the angular frequency ω when we refer to the

frequency domain. The unit of the angular frequency is radians/second (or simpler s−1). It is easily con-

verted to the frequency ν (unit in Hz) using the following equation:

ω = 2πν

Second: just let us remember the definition of even and odd functions.

Definition 2.1 (Even and odd functions). A function is said to be even if

f (−t) = f (t) even function

while a function is said to be odd if

f (−t) = −f (t) odd function

Any function can be described in terms of a mixture of even and odd functions, by means of the following
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t

f(t)

even

t

f(t)

odd

t

f(t)

mixed =

t

f(t)

even +

t

f(t)

odd

Figure 2.1: Examples of even, odd and mixed functions

decomposition (see Figure 2.1):

feven =
f (t) + f (−t)

2

fodd =
f (t)− f (−t)

2
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2.1 Fourier Series

This Section will deal with the mapping of periodic functions to a series based on the trigonometric func-

tions sine (and odd function) and cosine (even function).

2.1.1 Definition

Any periodic functionf (t) can be expanded into a series of trigonometric function, the so called Fourier

series, as follows
Definition 2.2 (Fourier series).

f (t) =

∞∑
k=0

(Ak cosωkt +Bk sinωkt) withωk =
2πk

T
, B0 = 0 (2.1)

T is the period of the function f (t). The amplitudes or Fourier coefficients Ak and Bk are determined in

such a way that the infinite series is identical with the function f (t). Equation (2.1) therefore tells us
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that any periodic function can be represented as a superposition of sine-function and cosine-function

with appropriate amplitudes – with an infinite number of terms, if need be – yet using only precisely

determined frequencies:

ω = 0,
2π

T
,
4π

T
,
6π

T
, . . .

Here a video showing the geometric visualization of the sum of the first three terms of the Fourier de-
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composition of the boxcar function.

2.1.2 Calculation of the Fourier Coefficients

Before we compute the expressions of the Fourier coefficients, we need some tools. In all following inte-

grals we integrate from−T/2 to+T/2, meaning over an interval with the periodT that is symmetrical

to t = 0. We could also pick any other interval, as long as the integrand is periodic with period T and

gets integrated over a whole period. The letters n and m in the formulas below are natural numbers

0, 1, 2, . . . Let’s have a look at the following

∫ +T/2

−T/2

cosωnt dt =


0 forn ̸= 0

T forn = 0

(2.2)

∫ +T/2

−T/2

sinωnt dt = 0 (2.3)
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This results from the fact that the areas on the positive half-plane and the ones on the negative one

cancel out each other, provided we integrate over a whole number of periods. Cosine integral forn = 0

requires special treatment, as it lacks oscillations and therefore areas can’t cancel out each other: there

the integrand is 1, and the area under the horizontal line is equal to the width of the intervalT . Further-

more, we need the following trigonometric identities:

cosα cos β =
1

2
[cos(α− β) + cos(α + β)]

sinα sin β =
1

2
[cos(α− β)− cos(α + β)]

sinα cos β =
1

2
[sin(α− β) + sin(α + β)]

(2.4)

Using these identities we can demonstrate that the system of basis functions consisting of (sinωkt, cosωkt)

with k = 0, 1, 2, . . . is an orthogonal system. This means that
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∫ +T/2

−T/2

cosωnt cosωmt dt =


0 forn ̸= m

T/2 forn = m ̸= 0

T forn = m = 0

(2.5)

∫ +T/2

−T/2

sinωnt sinωmt dt =


0 forn ̸= m, n = 0, m = 0

T/2 forn = m ̸= 0

(2.6)

∫ +T/2

−T/2

sinωnt cosωmt dt = 0 (2.7)

Please note that our basis system is not an orthonormal system, i.e. the integrals for n = m are not nor-

malized to 1. What’s even worse, the special case of n = m = 0 in (2.5) is a nuisance, and will keep

bugging us again and again.

Using the above orthogonality relations, we are able to calculate the Fourier coefficients straight away.

We need to multiply both sides of (2.1) by cosωkt and integrate from −T/2 to +T/2. Due to the or-
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thogonality, only terms with k = k′ will remain; the second integral will always disappear. This gives

us:

Ak =
2

T

∫ +T/2

−T/2

f (t) cosωkt dt for k ̸= 0 (2.8)

A0 =
1

T

∫ +T/2

−T/2

f (t) dt (2.9)

Please note the prefactors 2/T or 1/T , respectively, in (2.8) and (2.9). Equation (2.9) simply is the av-

erage of the function f (t). Now let’s multiply both sides of (2.1) by sinωkt and integrate from−T/2 to

+T/2. We now have:

Bk =
2

T

∫ +T/2

−T/2

f (t) sinωkt dt for all k (2.10)

Equations (2.8) and (2.10) may also be interpreted like: by weighting the function f (t) with cosωkt or

sinωkt, respectively, we “pick” the spectral components from f (t), when integrating, corresponding to

the even or odd components, respectively, of the frequencyωk.
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Ex. 2.1 Calculation of Fourier coefficients: Constant and triangular functions

Run the Fourier applet
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Figure 2.2: The triangular function and consecutive approximations by a Fourier series with more and more terms
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2.1.3 Fourier Series and Music

While listening to music, we are able to clearly distinguish the sound produced by different instruments.

The sound coming from a flute is quite different from the sound coming from a violin, even if they play

the same note2.

In musical terms, this difference is called timbre and it was von Helmholtz, in the second half of the XIX

century, who understood that (von Helmholtz H. 1885. “On the sensations of tone as a physiological basis for

the theory of music”)

“Each vibratory motion of the air in the ear canal, corresponding to a musical sound, can always be uniquely

regarded as the sum of a number of vibratory movements.”

or, in mathematical terms, the timbre can be easily explained in terms of Fourier decomposition of the

signal.
2In general terms, we call pitch of a sound the “perceived” frequency of a musical note, and it is related to the amount of Fourier frequencies we (that is, our ears) are able to

distinguish.
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Figure 2.3: Comparison of a Fourier decomposition of a musical signal played by different instruments. On the abscissa we list the Fourier frequency
index k, while the Y axis shows the power, in dB, emitted in the single harmonics (from Olson H.F., “Music, Physics and Engineering”).

Indeed, if we apply Eq. (2.1) and extract the Fourier coefficients for various instruments we will obtain

something like shown in Figure 2.3: it is evident that the harmonic content of different instruments is

quite different.

For example, for the violin we have that the first Fourier frequencies are quite intense (and the brilliance

of the violin sound is due the fact that these harmonics peak in the region where our ear is more sensi-
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tive). On the other hand, for the clarinet (here in the chalumeau registry) the even harmonics are quite

faint, giving raise to its characteristic “hollow” sound. The typical metallic sound of the trumpet is due

to the presence of very high harmonics, beyond the 21st.

It is interesting to observe that the harmonic content is different not only for different instruments play-

ing the same note, but also for the same note played by the same instrument (the La played by a violin

on the La string (not fingered) and the La played on the Re string (fingered)), or the same note played

in different octaves. As an example, in Figure 2.4 we show the harmonic content of all the Do’s in the

piano.

Note how the lack of harmonics in the higher Do’s, like Do6 and Do7, makes them an almost “pure sound”.

Furthermore, for the Do1 we can notice that the fundamental frequency and the lower harmonics are

fainter than the harmonics between the 10th and the 15th. Despite this, our ears recognize the sound as

a Do1. This phenomenon is called “virtual pitch”, and it is the demonstration that our brain is a “Fourier

analyzer”.
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Figure 2.4: Comparison of Fourier decomposition of different Do’s played by a piano, from the left to the right of the keyboard. Note that for the Do1
the fundamental and the lower harmonics are fainter than the higher ones, therefore the pitch is somewhat “virtual”, while the lack of harmonics in
Do6 and Do7 makes them an almost pure sound.
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Figure 2.5: Effects of phase shifts among harmonics in a complex signal: Left: a square wave obtained by summing the first 21 harmonics all in phase
among each other. Central: harmonics shifted byπ/2. Right: random shift.

Our brain is therefore able to decompose an acoustic signal in its Fourier components, and is able to

perceive each of them, independently of their phase relationships. In this perspective, the sentence

that Leibniz’ wrote in a letter to Christian Goldbach on April 17, 1712 was prophetic: “Musica est exercitium

arithmeticæ occultum nescientis se numerare animi”3.

The fact that the human brain is not able to perceive phase differences among harmonics is very im-

portant: indeed, the timbre of an instrument would change during the emission of a sound because of

the different velocities of the harmonics along a string. To illustrate this phenomenon, in Figure 2.5 we
3Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.
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show a square wave obtained by summing the first 21 harmonics, all in phase among each other. In the

central panel we show the shape of the wave obtained by introducing a phase shift ofπ/2, while in the

right panel the shift is random. While the wave shapes are completely different, if the signals are sent

to a loudspeaker they are indistinguishable to the human ear.

2.1.4 Fourier Series in Complex Notation

In (2.1) the indexk starts from 0, meaning that we will rule out negative frequencies in our Fourier series.

The cosine terms didn’t have a problem with negative frequencies. The sign of the cosine argument

doesn’t matter anyway, so we would be able to go halves as far as the spectral intensity at the positive

frequency kω was concerned: −kω and kω would get equal parts, as shown in Figure 2.6. As frequency

ω = 0 (a frequency as good as any other frequencyω ̸= 0) has no “brother”, it will not have to go halves.

A change of sign for the sine-terms arguments would result in a change of sign for the corresponding

series term. The splitting of spectral intensity like “between brothers” (equal parts of−ωk and+ωk now
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will have to be like “between sisters”: the sister for−ωk also gets 50%, but hers is minus 50%!

Instead of using (2.1) we might as well use:

f (t) =

+∞∑
k=−∞

(A′
k cosωkt +B′

k sinωkt) (2.11)

where, of course, the following is true: A′
−k = A′

k, B′
−k = −B′

k. The formulas for the computation of

A′
k and B′

k for k > 0 are identical to (2.8) and (2.10), though the lack the extra factor 2. Equation (2.9)

forA0 stays unaffected by this. This helps us avoid to provide a special treatment for the constant term.

Now we’re set and ready for the introduction of complex notation. In the following we’ll always assume

that f (t) is a real function. Generalizing this for complex f (t) is no problem. Our most important tool

is Euler identity:

eiαt = cosαt + i sinαt (2.12)

where i is the imaginary unit (i2 = −1). This allows us to rewrite the trigonometric functions as
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Figure 2.6: Plot of the “triangular function” Fourier frequencies: Top: Only positive frequencies; Bottom: Positive and negative frequencies.
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cosαt =
1

2
(eiαt + e−iαt)

sinαt =
1

2i
(eiαt − e−iαt)

(2.13)

Inserting these relations into (2.1) we obtain

f (t) = A0 +

∞∑
k=1

(
Ak − iBk

2
eiωkt +

Ak + iBk

2
e−iωkt

)
(2.14)

If we define

C0 = A0

Ck =
Ak − iBk

2

C−k =
Ak + iBk

2
, k = 1, 2, 3, . . .

(2.15)

we finally get
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f (t) =

∞∑
k=−∞

Cke
iωkt ωk =

2πk

T
(2.16)

NowCk can be formulated in general terms as

Ck =
1

T

∫ +T/2

−T/2

f (t) e−iωkt dt for k = 0,±1,±2, . . . (2.17)

Please note that there is a negative sign in the exponent. Please also note that the index k runs from

−∞ to+∞ forCk, whereas it runs from 0 to+∞ forAk andBk.

2.1.5 Theorems and Rules

2.1.5.1 Linearity Theorem

Expanding a periodic function into a Fourier series is a linear operation. This means that we may use the

two Fourier pairs:
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f (t) ↔ {Ck;ωk}

g(t) ↔ {C ′
k;ωk}

(2.18)

to form the following combination

h(t) = a× f (t) + b× g(t) ↔ {aCk + bC ′
k;ωk} (2.19)

Thus, we may easily determine the Fourier series of a function by splitting it into items whose Fourier

series we already know.

2.1.5.2 The Shifting Rules

Often, we want to know how the Fourier series changes if we shift the function f (t) along the time axis.

This, for example, happens on a regular basis if we use a different interval, e.g. from 0 to T , instead of

the symmetrical one from −T/2 to +T/2 we have used so far. In this situation, the First Shifting Rule
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comes in very handy:

f (t) ↔ {Ck;ωk}

f (t− a) ↔ {Cke
−iωka;ωk}

(2.20)

Proof.

Cnew
k =

1

T

∫ +T/2

−T/2

f (t− a) e−iωkt dt
t′=t−a
=

1

T

∫ +(T/2)−a

−(T/2)−a

f (t′) e−iωkt
′
e−iωka dt′

= e−iωkaCold
k

We integrate over a full period, that’s why shifting the limits of the interval by a does not make any

difference. The proof is trivial, the result of the shifting along the time axis not! The new Fourier coeffi-

cient results from the old coefficient Ck by multiplying it with the phase factor e−iωka. As Ck generally

is complex, shifting “shuffles” real and imaginary parts.
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Ex. 2.2 Shifting rules: Triangular function with average equal to zero. Quar-
ter period shifted triangular function. Half period shifted triangular function.

The First Shifting Rule showed us that shifting within the time domain leads to a multiplication by a

phase factor in the frequency domain. Reversing this statement gives us the Second Shifting Rule:

f (t) ↔ {Ck;ωk}

f (t) e
i 2πa t
T ↔ {Ck−a;ωk}

(2.21)

In other words, a multiplication of the function f (t) by the phase factor ei 2πat/T results in frequency

ωk now being related to “shifted” coefficient Ck−a instead of the former coefficient Ck. A comparison

between (2.21) and (2.20) demonstrates the two-sided character of the two Shifting Rules. If a is an

integer, there won’t be any problem if we simply take the coefficient shifted by a. But what if a is not an

integer?

Strangely enough nothing serious will happen. Simply shifting like we did before won’t work any more,
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but who is to keep us from inserting (k − a) into the expression for oldCk, whenever k occurs.

Before we present examples, two more ways of writing down the Second Shifting Rule are in order:

f (t) ↔{Ak;Bk;ωk}

f (t) e
i 2πa t
T ↔

{
1

2
[Ak+a + Ak−a + i (Bk+a −Bk−a)] ;

1

2
[Bk+a −Bk−a + i (Ak−a − Ak+a)] ;ωk

} (2.22)

Caution! This is valid for k ̸= 0. Note that old A0 becomes Aa/2 + iBa/2. The formulas becomes a lot

simpler in case f (t) is real. In this case we get:

f (t) cos
2πat

T
↔
{
Ak+a + Ak−a

2
;
Bk+a +Bk−a

2
;ωk

}
(2.23)

oldA0 becomesAa/2 and

f (t) sin
2πat

T
↔
{
Bk+a −Bk−a

2
;
Ak+a − Ak−a

2
;ωk

}
(2.24)
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oldA0 becomesBa/2.

Ex. 2.3 Second Shifting Rule: constant function and triangular function

2.1.5.3 Scaling Theorem

Sometimes we happen to want to scale the time axis. In this case, there is no need to re-calculate the

Fourier coefficients. From:

f (t) ↔ {Ck;ωk}

we get: f (at) ↔ {Ck;
ωk

a
}

(2.25)

Here, a must be real! For a > 1 the time axis will be stretched and, hence, the frequency axis will be

compressed. For a < 1 the opposite is true. The proof for (2.25) is easy and follows from (2.17):
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Cnew
k =

a

T

∫ +T/2a

−T/2a

f (at) e−iωkt dt
t′=at
=

a

T

∫ +T/2

−T/2

f (t′) e−iωkt
′/a 1

a
dt′

= Cold
k withωnew

k =
ωold
k

a

Please note that we also have to stretch or compress the interval limits because of the requirement of

periodicity. Here, we have tacitly assumed a > 0. For a < 0, we would only reverse the time axis and,

hence, also the frequency axis. For the special case a = −1we have:

f (t) ↔{Ck;ωk}

f (−t) ↔{Ck;−ωk}
(2.26)
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2.1.6 Partial Sums, Parseval Equation

For practical work, infinite Fourier series have to get terminated at some stage, regardless. Therefore,

we only use a partial sum, say until we reach kmax = N . ThisN th partial sum then is:

SN =

N∑
k=0

(Ak cosωkt +Bk sinωkt) (2.27)

Terminating the series results in the following squared error:

δ2N =
1

T

∫
T

[f (t)− SN(t)]
2 dt (2.28)

TheT below the integral symbol means integration over a full period. This definition will become plau-

sible in a second if we look at the discrete version:

δ2N =
1

T

N∑
j=0

(fj − sj)
2 (2.29)

Please note that we divide by the length of the interval, to compensate for integrating over the interval
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T . Now we know that the following is correct for the infinite series:

lim
N→∞

SN =

∞∑
k=0

(Ak cosωkt +Bk sinωkt) (2.30)

provided theAk andBk happen to be the Fourier coefficients. Does this also have to be true for theN th

partial sum? Isn’t there a chance the mean squared error would get smaller, if we used other coefficients

instead of Fourier coefficients? That’s not the case! To prove it, we’ll now insert (2.27) and (2.28) in (2.30),

leave out limN→∞ and get:
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δ2N =
1

T

{∫
T

f 2(t) dt− 2

∫
T

f (t)SN(t) dt +

∫
T

S2
N(t) dt

}
=

1

T

{∫
T

f 2(t) dt

−2

∫
T

∞∑
k=0

(Ak cosωkt +Bk sinωkt)

N∑
k=0

(Ak cosωkt +Bk sinωkt) dt

+

∫
T

N∑
k=0

(Ak cosωkt +Bk sinωkt)

N∑
j=0

(Aj cosωjt +Bj sinωjt) dt


=

1

T

{∫
T

f 2(t) dt− 2TA2
0 − 2

T

2

N∑
k=1

(A2
k +B2

k) + TA2
0 +

T

2

N∑
k=1

(A2
k +B2

k)

}

=
1

T

∫
T

f 2(t) dt− A2
0 −

1

2

N∑
k=1

(A2
k +B2

k) (2.31)

Here, we made use of the somewhat cumbersome orthogonality properties (2.5), (2.6) and (2.7). As the

A2
k andB2

k always are positive, the mean squared error will drop monotonically whileN increases.
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Ex. 2.4 Approximating the triangular function

As δ2N is always positive, we finally arrive from (2.31) at the Bessel inequality

1

T

∫
T

f 2(t) dt ≥ A2
0 +

1

2

N∑
k=1

(A2
k +B2

k) (2.32)

For the border-line case ofN → ∞we get the Parseval equation:

1

T

∫
T

f 2(t) dt = A2
0 +

1

2

∞∑
k=1

(A2
k +B2

k) (2.33)

Parseval equation may be interpreted as follows: 1/T
∫
f 2(t) dt is the mean squared “signal” within the

time domain, or – more colloquially – the information content. Fourier series don’t lose this information

content: it’s in the squared Fourier coefficients.
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2.2 Continuous Fourier Transformation

Contrary to Section 2.1, here we won’t limit things to periodic f (t). The integration interval is the en-

tire real axis (−∞,+∞). For this purpose we’ll look at what happens at the transition from a series-

representation to an integral-representation:

Series: Ck =
1

T

∫ +T/2

−T/2

f (t) e−iωkt dt

Continuous: lim
T→∞

(TCk) =

∫ +∞

−∞
f (t) e−iωt dt

2.2.1 Definition

Let us define the Forward Fourier Transformation and the Inverse Fourier Transformation as follows:
Definition 2.3 (Forward Fourier transformation).

F (ω) =

∫ +∞

−∞
f (t)e−iωt dt (2.34)
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Definition 2.4 (Inverse Fourier transformation).

f (t) =
1

2π

∫ +∞

−∞
F (ω)e+iωt dω (2.35)

Please note that in the case of the forward transformation, there is a minus sign in the exponent (cf.

(2.17)), in the case of the inverse transformation, this is a plus sign. In the case of the inverse transfor-

mation, 1/2π is in front of the integral, contrary to the forward transformation.

The asymmetric aspect of the formulas has tempted many scientists to introduce other definitions, for

example to write a factor 1/
√
2π for forward as well as inverse transformation. That’s no good, as the

definition of the averageF (0) =
∫ +∞
−∞ f (t) dtwould be affected.

Now let us demonstrate that the inverse transformation returns us to the original function. For the for-

ward transformation, we often will use FT(f (t)), and for the inverse transformation we will use FT−1(F (ω)).

We will begin with the inverse transformation and insert:
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Proof.

f (t) =
1

2π

∫ +∞

−∞
F (ω) eiωt dω =

1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f (t′) e−iωt′ eiωt dt′

=
1

2π

∫ +∞

−∞
f (t′) dt′

∫ +∞

−∞
ei(t−t′)ω dω (2.36)

=

∫ +∞

−∞
f (t′) δ(t− t′) dt′ = f (t)

where δ(t) is the Dirac δ-function4.

2.2.2 Transformation of relevant functions

2.2.2.1 The δ-function

From (2.36), by putting f (t) = 1we have
4The δ-function is actually a distribution. Its value is zero anywhere except when its argument is equal to zero. In this case it is∞.
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FT(δ(t)) = 1

FT−1(1) = 2πδ(ω)

(2.37)

We realize the dual character of the forward and inverse transformations: a very slowly varying function

f (t) will have a very high spectral density for very small frequencies; the spectral density will go down

quickly and rapidly approaches zero. Conversely, a quickly varying function f (t)will show spectral den-

sity over a very wide frequency range (we will discuss about this issue in more detail in Section 2.2.6).

2.2.2.2 The Dirac comb

A Dirac comb (also called “sampling function”, see (5.9)), is an infinite sequence of Dirac δ-functions

placed at even intervals of sizeT :

IIIT (t) ≡
+∞∑
−∞

δ(t− nT ). (2.38)
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The Fourier transform of a Dirac comb spaced with period T is a Dirac comb spaced with period 1/T

(see Figure 2.7, fourth panel)

F IIIT (t)) =
1

T
III 1

T
(ω). (2.39)

2.2.2.3 A sinusoid with frequencyω0

From the definition of the Fourier transformation we have

F
(
eω0t
)
=

∫ +∞

−∞
e−i(ω−ω0)t dt = δ(ω − ω0). (2.40)

Using the Euler identity (2.12) we can write

cos(ωt) =
eiωt + e−iωt

2
; sin(ωt) =

eiωt − e−iωt

2i
(2.41)

Combining (2.40) and (2.41), along with the linearity of the Fourier transform, we obtain
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FT (cos(ω0t)) =
1

2
[δ(ω − ω0) + δ(ω + ω0)]

FT (sin(ω0t)) =
1

2i
[δ(ω − ω0)− δ(ω + ω0)] (2.42)

In other words, a sinusoidal signal with frequency ω0 has a Fourier transform consisting of a weighted

sum of δ-functions at±ω0 (see Figure 2.7, first panel).

2.2.2.4 The Gaussian function

The prefactor is chosen in such a way that the area under the function is normalized to unity.

f (t) =
1

σ
√
2π

e
−1

2
t2

σ2

Its Fourier transform is
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Figure 2.7: Fourier transforms of relevant functions. On the right the function, on the left the corresponding Fourier transformation. From VanderPlas
2018.
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F (ω) =
1

σ
√
2π

∫ +∞

−∞
e
−1

2
t2

σ2 e−iωt dt

=
2

σ
√
2π

∫ +∞

0

e
−1

2
t2

σ2 cosωt dt

= exp

(
−1

2
σ2ω2

)

Again, the imaginary part is null because the function is even. The Fourier transform of a Gaussian re-

sults to be another Gaussian. Note that the Fourier transform is not normalized to unit area.

f (t) has σ in the exponent denominator, while F (ω) has it in the exponent numerator: the slimmer

f (t), the widerF (ω) and vice versa, as shown in Figure 2.7, second panel.

2.2.2.5 The “rectangular” function

Now let us discuss an important example: the Fourier transform of the “rectangular” normalized func-

tion (see Section 2.3.3 for a detailed discussion)
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f (t) =


1/T for − T/2 ≤ t ≤ +T/2

0 else

Its Fourier transform is

F (ω) =
2

T

∫ +T/2

0

cosωt dt =
sinωT/2

ωT/2
(2.43)

The imaginary part is 0, as f (t) is even. The Fourier transformation of a rectangular function, therefore,

is of the type sinx/x. Some authors use the expression sinc(x) for this case. The “c” stands for cardinal

and we will discuss about its importance in signal analysis in Section 3.4. The functions f (t) and F (ω)

are shown in Figure 2.7, third panel.

Ex. 2.5 Fourier transformation of relevant functions: bilateral exponential,
unilateral exponential
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2.2.3 Theorems and Rules

2.2.3.1 Linearity Theorem

For completeness’ sake, once again:

f (t) ↔F (ω);

g(t) ↔G(ω);

a× f (t) + b× g(t) ↔a× F (ω) + b×G(ω)

(2.44)

2.2.3.2 Shifting Rules

We already know: shifting in the time domain means modulation in the frequency domain, and a mod-

ulation in the time domain results in a shift in the frequency domain
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f (t) ↔F (ω);

f (t− a) ↔F (ω) e−iωa

f (t) e−iω0t ↔F (ω − ω0)

(2.45)

2.2.3.3 Scaling Theorem

f (t) ↔F (ω);

f (at) ↔ 1

|a|
F
(ω
a

) (2.46)

Proof. Analogously to (2.25) with the difference that here we cannot stretch or compress the interval

limits±∞:
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F (ω)new =
1

T

∫ +∞

−∞
f (at) e−iωt dt

t′=at
=

1

T

∫ +∞

−∞
f (t′) e−iωt′/a 1

a
dt

1

|a|
F (ω)old with ω =

ωold

a

Here, we tacitly assumed a > 0. For a < 0 we would get a minus sign in the prefactor; however, we

would also have to interchange the integration limits and thus get together the factor1/|a|. This means:

stretching (compressing) the time-axis results in the compression (stretching) of the frequency-axis. For

the special case a = −1we get:

f (t) →F (ω);

f (−t) →F (−ω);

(2.47)

Therefore, turning around the time axis (“looking into the past”) results in turning around the frequency
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axis.

2.2.4 Convolution, Parseval Theorem

2.2.4.1 Convolution

The convolution of a function f (t)with another function g(t) is defined as:
Definition 2.5 (Convolution).

h(t) =

∫ +∞

−∞
f (ξ) g(t− ξ) dξ ≡ f (t)⊗ g(t) (2.48)

Please note that there is a minus sign in the argument of g(t). The convolution is commutative, dis-

tributive, and associative. This means
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commutative: f (t)⊗ g(t) = g(t)⊗ f (t)

distributive: f (t)⊗ (g(t) + h(t)) = f (t)⊗ g(t) + f (t)⊗ h(t)

associative: f (t)⊗ (g(t)⊗ h(t)) = (f (t)⊗ g(t))⊗ h(t)

Before going on with the mathematical demonstration of the convolution theorem, let us present two

physical examples of convolution.

A real observation of a physical phenomenon cannot lasts forever, but will be performed for a certain

amount of time. This corresponds to “convolute” a continuous signal with a rectangular function, as

shown in Figure 2.8. According to the convolution theorem, the Fourier transform of the convolution is

the point wise product of the individual Fourier transforms. This concept will be discussed into details

in the Second Part of the course.
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Figure 2.8: Visualization of the convolution theorem: In the right panels, the black and gray lines represent the real and imaginary parts of the trans-
forms, respectively. From VanderPlas 2018.
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As another example of convolution, let us take a pulse that looks like an unilateral exponential function

f (t) =


e−t/τ for t ≥ 0

0 else
(2.49)

Any device that delivers pulses as a function of time, has a finite rise-time/decay-time, which for sim-

plicity’s sake we’ll assume to be a Gaussian

g(t) =
1

σ
√
2π

exp

(
−1

2

t2

σ2

)
(2.50)

That is how our device would represent a δfunction – we can’t get sharper than that. The function g(t),

therefore, is the device’s resolution function, which we’ll have to use for the convolution of all signals we

want to record. An example would be the bandwidth of an oscilloscope. We then need:

S(t) = f (t)⊗ g(t) (2.51)

where S(t) is the experimental, smeared signal. It’s obvious that the rise at t = 0 will not be as steep,
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and the peak of the exponential function will get “ironed out”. We’ll have to take a closer look:

S(t) =
1

σ
√
2π

∫ +∞

0

e−ξ/τ exp

(
−1

2

(t− ξ)2

σ2

)
dξ

=
1

σ
√
2π

exp

(
−1

2

t2

σ2

)∫ +∞

0

exp

[
−ξ

τ
+

tξ

σ2
− 1

2

ξ2

σ2

]
dξ

=
1

σ
√
2π

exp

(
−1

2

t2

σ2

)
exp

(
1

2

t2

σ2

)
exp

(
− t

τ

)
exp

(
σ2

2τ 2

)
×∫ +∞

0

exp

{
− 1

2σ2

[
ξ −

(
t− σ2

τ

)]2}
dξ

=
1

σ
√
2π

exp

(
− t

τ

)
exp

(
σ2

2τ 2

)
×∫ +∞

−(t−σ2/τ)

exp

(
−1

2

ξ′2

σ2

)
dξ′ with ξ′ = ξ −

(
t− σ2

τ

)
=

1

2
exp

(
− t

τ

)
exp

(
σ2

2τ 2

)
erfc

(
σ

τ
√
2
− t

σ
√
2

)

(2.52)

Here, erfc(x) = 1− erf(x) is the complementary error function, where
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erf(x) =
2√
π

∫ x

0

e−t2 dt (2.53)

Figure 2.9 shows the result of the convolution of the exponential function with the Gaussian. The fol-

lowing properties immediately stand out: (i) The finite time resolution ensures that there is also a signal

at negative times, whereas it was 0 before convolution. (ii) The maximum is not at t = 0 any more. (iii)

What can’t be seen straight away, yet is easy to grasp, is the following: the center of gravity of the expo-

nential function, which was at t = τ , doesn’t get shifted at all upon convolution.

Now we prove the extremely important Convolution Theorem:
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Figure 2.9: Result of the convolution of an unilateral exponential function with a Gaussian. The exponential function without convolution is indicated
with the thin line

Theorem 2.1 (Convolution theorem). Let be

f (t) ↔ F (ω)

g(t) ↔ G(ω)

Then

h(t) = f (t)⊗ g(t) ↔ H(ω) = F (ω)×G(ω) (2.54)
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The convolution integral becomes, through Fourier transformation, a product of the Fourier-transformed

ones.

Proof.

H(ω) =

∫ ∫
f (ξ)g(t− ξ) dξ e−iωt dt

=

∫
f (ξ) e−iωξ

[∫
g(t− ξ) e−iω(t−ξ) dt

]
dξ

t′=t−ξ
=

∫
f (ξ) e−iωξ dξ G(ω)

= F (ω)G(ω)

The integration boundaries ±∞ did not change by doing that, and G(ω) does not depend on ξ. The

inverse Convolution theorem is:

Theorem 2.2 (Inverse convolution theorem). Let be
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f (t) ↔ F (ω)

g(t) ↔ G(ω)

Then

h(t) = f (t)× g(t) ↔ H(ω) =
1

2π
F (ω)⊗G(ω) (2.55)
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Proof.

H(ω) =

∫
f (t) g(t) e−iωt dt

=

∫ (
1

2π

∫
F (ω′) e+iω′t dω′ × 1

2π

∫
G(ω′′) e+iω′′t dω′′

)
e−iωt dt

=
1

(2π)2

∫
F (ω′)

∫
G(ω′′)

∫
ei(ω

′+ω′′−ω)t dt︸ ︷︷ ︸
=2πδ(ω′+ω′′−ω)

dω′dω′′

=
1

2π

∫
F (ω′)G(ω − ω′) dω′

=
1

2π
F (ω)⊗G(ω)

Contrary to the Convolution Theorem (2.54) in (2.55) there is a factor 1/2π in front of the convolution of

the Fourier transforms.

A widely popular exercise is the unfolding of data: the instruments’ resolution function “smears out”

the quickly varying functions, but we naturally want to reconstruct the data to what they would look
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like if the resolution function was infinitely good – provided we precisely knew the resolution function.

In principle, that’s a good idea – and thanks to the Convolution Theorem, not a problem: we Fourier-

transform the data, divide by the Fourier-transformed resolution function and transform it back. For

practical applications it doesn’t quite work that way. As in real life, we can’t transform from−∞ to+∞,

we need low-pass filters, in order not to get “swamped” with oscillations resulting from cut-off errors.

Therefore, the advantages of unfolding are just as quickly lost as gained. Actually, the following is obvi-

ous: whatever got “smeared” by finite resolution, can’t be reconstructed unambiguously. Imagine that

a very pointed peak got eroded over millions of years, so there’s only gravel left at its bottom. Try recon-

structing the original peak from the debris around it! The result might be impressive from an artist’s

point of view, an artifact, but it hasn’t got much to do with the original reality.

Ex. 2.6 Convolution: Gaussian frequency distribution. Lorentzian frequency
distribution
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2.2.4.2 Cross Correlation

Sometimes, we want to know if a measured function f (t) has anything in common with another mea-

sured function g(t). Cross correlation is ideally suited to that.
Definition 2.6 (Cross correlation).

h(t) =

∫ +∞

−∞
f (ξ) g∗(t + ξ) dξ ≡ f (t) ⋆ g(t) (2.56)

Important note: Here, there is a plus sign in the argument of g, therefore we don’t mirror g(t). For even

functions g(t) this doesn’t matter. The asterisk ∗ means complex conjugated. We may disregard it for

real functions. The symbol ⋆ means cross correlation, and is not to be confounded with ⊗ for folding.

Cross correlation is associative and distributive, yet not commutative. That’s not only because of the

complex-conjugated symbol, but mainly because of the plus sign in the argument ofg(t). Of course, we

want to convert the integral in the cross correlation to a product by using Fourier transformation.

Theorem 2.3 (Cross correlation). Let be
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f (t) ↔ F (ω)

g(t) ↔ G(ω)

Then

h(t) = f (t) ⋆ g(t) ↔ H(ω) = F (ω)×G∗(ω) (2.57)

Proof.

H(ω) =

∫ ∫
f (ξ) g∗(t + ξ) dξ e−iωt dt

=

∫
f (ξ)

[∫
g∗(t + ξ) e−iωt dt

]
dξ

=

∫
f (ξ)G∗(+ω) e−iωξ dξ

= F (ω)×G∗(ω)
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In the third passage we used the first shifting rule (2.45) with ξ = −a. In the last passage we use the

following identity:

G(ω) =

∫
g(t) e−iωt dt

G∗(ω) =

∫
g∗(t) e+iωt dt

G∗(−ω) =

∫
g∗(t) e−iωt dt

The interpretation of (2.57) is simple: if the spectral densities off (t)andg(t)are a good match, i.e. have

much in common, then H(ω) will become large on average, and the cross correlation h(t) will also be

large, on average. Otherwise, if F (ω) would be small e.g. where G∗(ω) is large and vice versa, so that

there is never much left for the product H(ω). Then also h(t) would be small, i.e. there is not much in
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common between f (t) and g(t).

2.2.4.3 Autocorrelation

The autocorrelation function is the cross correlation of a function f (t)with itself. We may ask, for what

purpose we’d want to check for what f (t) has in common with f (t). Autocorrelation, however, seems

to attract many people in a magical manner. We often hear the view, that a signal full of noise can be

turned into something really good by using the autocorrelation function, i.e. the signal-to-noise ratio

would improve a lot. Don’t you believe a word of it! We’ll see why shortly.
Definition 2.7 (Autocorrelation).

h(t) =

∫
f (t) f ∗(ξ + t) dξ (2.58)

From its definition and the cross-correlation theorem (2.57) we have the so called
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Theorem 2.4 (Wiener-Khinchin theorem).

f (t) ↔ F (ω)

h(t) = f (t) ⋆ f (t) ↔ H(ω) = F (ω)× F ∗(ω) = |F (ω)|2
(2.59)

We may either use the Fourier transform F (ω) of a noisy function f (t) and get angry about the noise

in F (ω), or we first form the autocorrelation function h(t) from the function f (t) and are then happy

about the Fourier transform H(ω) of function h(t). Normally, H(ω) does look a lot less noisy, indeed.

Instead of doing it the roundabout way by using the autocorrelation function, we could have used the

square of the magnitude of F (ω) in the first place. We all know, that a squared representation in the

ordinate always pleases the eye, if we want to do cosmetics to a noisy spectrum. Big spectral compo-

nents will grow when squared, small ones will get even smaller. But isn’t it rather obvious that squaring

doesn’t change anything to the signal-to-noise ratio? In order to make it “look good”, we pay the price of

losing linearity.
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2.2.4.4 The Parseval Theorem

The autocorrelation function also comes in handy for something else, namely for deriving Parseval the-

orem. We start out with (2.58), insert especially t = 0, and get Parseval theorem:
Theorem 2.5 (Parseval theorem).

h(0) =

∫
|f (t)|2 dt = 1

2π

∫
|F (ω)|2 dω (2.60)

The second equal sign is obtained by inverse transformation of |F (ω)|2 where, for t = 0, eiωt becomes

unity.

Equation (2.60) states that the information content of the function f (x) – defined as integral over the

square of the magnitude – is just as large as the information content of its Fourier transformF (ω) (same

definition, but with 1/(2π)).
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2.2.5 Fourier Transformation of Derivatives

When solving differential equations, we can make life easier using Fourier transformation. The deriva-

tive simply becomes a product:

f (t) ↔ F (ω)

f ′(t) ↔ iωF (ω)

(2.61)

The proof is straight-forward:

Proof.

FT(f ′(t)) =

∫ +∞

−∞
f ′(t) e−iωt dt = f (t) e−iωt|+∞

−∞ − (−iω)

∫ +∞

−∞
f (t) e−iωt dt

= iωF (ω)

The first term in the partial integration is discarded, as f (t) → 0 for t → ∞, otherwise f (t) could not

be integrable. This game can go on:
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FT
(
dfn(t)

dnt

)
= (iω)nF (ω) (2.62)

For negative n we may also use the formula for integration. We can also formulate in a simple way the

derivative of a Fourier transformF (ω)with respect to the frequencyω:

dF (ω)

dω
= −i FT(t f (t)) (2.63)

Proof.
dF (ω)

dω
=

∫ +∞

−∞
f (t)

d

dω
e−iωt dt = −i

∫ +∞

−∞
f (t) t e−iωt dt = −i FT(t f (t))

2.2.6 Fourier Transform and Uncertainty Relation

At this point it should be clear that the behavior of a function and its Fourier transform is in a certain

sense complementary: to a function which is “wide spread” in the time domain corresponds a Fourier

transform which is “narrow” in the frequency domain and vice versa (see, e.g., the case for f (t) a con-
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stant). This rather qualitative statement can be proven mathematically, but in order to do that we need

the following

Lemma 2.6 (Cauchy-Schwarz Inequality). For any square integrable functionsz(x)andw(x)defined on the

interval [a, b], ∣∣∣∣∫ b

a

z(x)w(x) dx

∣∣∣∣2 ≤ ∫ b

a

|z(x)|2 dx
∫ b

a

|w(x|2 dx (2.64)

and equality holds if and only if z(x) is proportional tow∗(x) (almost everywhere in [a, b]).

Proof. Assume z(x) and w(x) are real (the extension to complex-valued functions is straight-forward).

Let
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I(y) =

∫ b

a

[z(x)− y w(x)]2 dx

=

∫ b

a

z2(x) dx︸ ︷︷ ︸
A

−2y

∫ b

a

z(x)w(x) dx︸ ︷︷ ︸
B

+y2
∫ b

a

w2(x) dx︸ ︷︷ ︸
C

= A− 2By + Cy2

Clearly, I(y) ≥ 0 for all y ∈ R. But if I(y) = A − 2By + Cy2 ≥ 0 for all y ∈ R then B2 − AC ≤ 0.

IfB2 − AC = 0, then I(y) has a real double root such that I(k) = 0 for y = k. Therefore (2.64) holds

and if it is an equality, then I(y) has a real root which implies

I(k) =

∫ b

a

[z(x)− k w(x)]2 dx = 0

But this can only occur if the integrand is identically zero; thus z(x) = k w(x) for allx.
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Definition 2.8 (Energy and distances for a signal). Supposef (t) is a finite energy signal with Fourier trans-

formF (ω). Let

E ≡
∫ +∞

−∞
|f (t)|2 dt = 1

2π

∫ +∞

−∞
|F (ω)|2 dω

d2 ≡ 1

E

∫ +∞

−∞
t2 |f (t)|2 dt

D2 ≡ 1

2πE

∫ +∞

−∞
ω2|F (ω)|2 dω

Theorem 2.7 (Uncertainty Principle). If
√

|t| f (t) → 0 as |t| → ∞, then

Dd ≥ 1

2
(2.65)

and equality holds if and only if f (t) has the form f (t) = K e−αt2.

Proof. Assume f (t) is real. Lemma 2.6 implies∣∣∣∣∫ +∞

−∞
t f

df

dt
dt

∣∣∣∣2 ≤ ∫ +∞

−∞
t2 f 2 dt

∫ +∞

−∞

∣∣∣∣dfdt
∣∣∣∣2 dt (2.66)
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Let us define

A ≡
∫ +∞

−∞
t f

df

dt
dt

=
1

2

∫ +∞

−∞
t
df 2

dt
dt

=
1

2
tf 2|+∞

−∞︸ ︷︷ ︸
α

− 1

2

∫ +∞

−∞
f 2 dt︸ ︷︷ ︸

β

when in the last passage we integrated by parts. By assumption
√

|t| f → 0 → |t|f 2 → 0 =⇒ tf 2 →

0. Thusα = 0. Furthermoreβ = E/2 and so

A = −E

2
(2.67)

Recalling (2.61), the Fourier transformation of derivatives, we havedf/dt ↔ iωF (ω). From the Parseval

Theorem (2.60) we obtain
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∫ +∞

−∞

∣∣∣∣dfdt
∣∣∣∣2 dt = 1

2π

∫ +∞

−∞
ω2|F (ω)|2 dω (2.68)

Substituting (2.67) and (2.68) into (2.66) we obtain∣∣∣∣−E

2

∣∣∣∣2 = ∣∣∣∣∫ +∞

−∞
t f

df

dt
dt

∣∣∣∣2 ≤ ∫ +∞

−∞
t2f 2 dt︸ ︷︷ ︸

Ed2

× 1

2π

∫ +∞

−∞
ω2|F (ω)|2 dω︸ ︷︷ ︸
ED2

(2.69)

That is

dD ≥ 1

2
(2.70)

If (2.70) is an equality, then (2.66) must be. This is possible only if (Lemma 2.6)

d

dt
f (t) = k t f (t)

which means
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f (t) = K e−αt2

Remember that the Fourier transform of a Gaussian is a Gaussian.

The Uncertainty Relation (2.70) states that one cannot jointly localize a signal in time and frequency arbi-

trarily well; either one has poor frequency localization or poor time localization. In signal analysis, this

means that no window function can be chosen which is arbitrarily sharply concentrated both in time

and frequency domain, and that the function that gives the best compromise about the “localization” is

a Gaussian.

In quantum mechanics, the momentum and position wave functions are Fourier transform pairs (that

is conjugate variables), to within a factor of Planck’s constant. With this constant properly taken into

account, the inequality (2.70) becomes the statement of the Heisenberg uncertainty principle.
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2.3 Spectral Leakage

By necessity, every observed signal we process must be of finite extent. The extent may be adjustable

and selectable, but it must be finite. If we observe the signal for T units of time, in order to apply our

continuous Fourier transformations we perform a so-called period extension of our data, as shown in Fig-

ure 2.10a. It is evident that if the periodic extension of a signal does not commensurate with its nat-

ural period, then discontinuities at the boundaries will be present (see Figure 2.11a). These disconti-

nuities will introduce spurious frequencies, responsible for spectral contributions over the entire set of

frequencies. This effect is called spectral leakage.

In order to clarify why we are talking about leakage, let us take as an example a 3 Hz sine wave, as in

the left panel of Figure 2.12. Suppose that the data are sampled at 1 Hz frequency (that is, every one

second). In this case there is no problem to display the three Hertz sine wave in the frequency domain,

because three Hertz is an integer multiple of the frequency resolution of 1 Hz (we are in the case shown
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(a) The captured signal happened to be periodic, and the recreated signal matches the original.

Figure 2.10: Periodic extension of a sinusoidal signal periodic and not periodic in the observation interval.
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(a) The captured signal is not periodic, causing discontinuities in the recreated signal.

Figure 2.11: Periodic extension of a sinusoidal signal periodic and not periodic in the observation interval.
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in Figure 2.10a).

On the right panel of Figure 2.12 we show the case when we want to analyze a 2.5 Hz sine wave: it is not

clear how to handle this situation because, due to the acquisition settings, displaying data at 2.5 Hz is

not possible. So the 2.5 Hz signal will leak from zero Hertz to the full bandwidth, as shown in Figure 2.13.

This might be surprising, as intuitively one might guess that the spectral leakage would be confined to

the adjacent frequency lines (2 Hz and 3 Hz in this case). But remember: we are performing a period ex-

tension of our data, that is, we transform our data in a continuous periodic signal extended fromT = −∞

toT = +∞, in order to apply continuous Fourier transformation. This means that we are spreading the

not periodicty over the entire frequency range.

A signal with leakage (green in Figure 2.13) has lower amplitude and a broader frequency response than

a signal with no leakage (red in Figure 2.13). This makes it difficult to quantify the signal properly in the

frequency domain.



M.Orlandini Temporal Data Analysis 90

Figure 2.12: Left: A 3 Hz sine wave has the correct amplitude at a 1 Hz frequency resolution. Right: When the sine wave is not an integer multiple of
the frequency resolution.
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Figure 2.13: Frequency spectrum of sine wave aligning with frequency resolution (red) and sine wave not aligning with frequency resolution (green).
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2.3.1 Window Functions

In order to reduce spectral leakage associated with finite observations intervals we apply to the data

weighting functions, called windows. From one viewpoint, the window is applied to data (as a multi-

plicative weighting) to reduce the order of the discontinuity of the periodic extension (Figure 2.14a).

This is accomplished by matching as many orders of derivatives (of the weighted data) as possible at

the boundary. The easiest way to achieve this matching is by setting the value of these derivatives to

zero or near zero. Thus windowed data are smoothly brought to zero at the boundaries so that the pe-

riodic extension of the data is continuous in many orders of derivatives (Figure 2.15a).

From another viewpoint, the window is multiplicatively applied to the Fourier frequencies so that a sig-

nal of arbitrary frequency will exhibit a significant component for frequencies close to the Fourier fre-

quencies. Of course both viewpoints lead to identical results.

In Figure 2.16 we show the effect of applying a window to our data in order to reduce the leakage. It
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(a) Windows are designed to reduce the sharp transient in the recreated signal as much as possible. The captured signal is multiplied by the window.

Figure 2.14: Effect of application of a window to a not periodic data in the observation interval.
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(a) The windowed signal is period extended: the sharp transients are eliminated and smoothed out, even though the repeated signal does not match the original
signal.

Figure 2.15: Effect of application of a window to a not periodic data in the observation interval.
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could be argued that, by applying a window to our data, the signal is not perfectly replicated. But the

main benefit is that the leakage is now confined over a smaller frequency range, instead of affecting the

entire frequency bandwidth of the measurement.

All window functions are, of course, even functions. The Fourier transforms of the window function

therefore don’t have an imaginary part. We require a large dynamic range in order to better compare

window qualities. That’s why we’ll use logarithmic representations covering equal ranges. And that’s

also the reason why we can’t have negative function values. To make sure they don’t occur, we’ll use the

power representation, i.e. |F (ω)|2.

2.3.2 Types of Window Functions

There are several different types of window functions that we can apply depending on the signal. An

actual plot of a window shows that the frequency characteristic of a window is a continuous spectrum

with a main lobe and several side lobes. The main lobe is centered at each frequency component of the
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Figure 2.16: Periodic sine wave without leakage (red), non-periodic sine wave with leakage (green), and windowed non-periodic sine wave with re-
duced leakage (blue).
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time-domain signal, and the side lobes approach zero. The height of the side lobes indicates the affect

the windowing function has on frequencies around main lobes (see Figure 2.17). The side lobe response

of a strong sinusoidal signal can overpower the main lobe response of a nearby weak sinusoidal signal.

Typically, lower side lobes reduce leakage but increase the bandwidth of the major lobe. The side lobe

roll-off rate is the asymptotic decay rate of the side lobe peaks. By increasing the side lobe roll-off rate,

we can reduce spectral leakage.

Selecting a window function is not a simple task. Each window function has its own characteristics and

suitability for different applications. To choose a window function, we must estimate the frequency

content of the signal.

❏ If the signal contains strong interfering frequency components distant from the frequency of inter-

est, choose a smoothing window with a high side lobe roll-off rate.

❏ If the signal contains strong interfering signals near the frequency of interest, choose a window
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function with a low maximum side lobe level.

❏ If the frequency of interest contains two or more signals very near to each other, spectral resolution

is important. In this case, it is best to choose a smoothing window with a very narrow main lobe.

❏ If the amplitude accuracy of a single frequency component is more important than the exact loca-

tion of the component in a given frequency bin, choose a window with a wide main lobe.

❏ If the signal spectrum is rather flat or broadband in frequency content, use the uniform window, or

no window.

❏ In general, the Hanning (Hann) window is satisfactory in 95 percent of cases. It has good frequency

resolution and reduced spectral leakage. If we do not know the nature of the signal but we want to

apply a smoothing window, start with the Hann window.

Even if we use no window, the signal is convolved with a rectangular-shaped window of uniform height,

by the nature of taking a snapshot in time of the input signal and working with a discrete signal. This
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convolution has a sine function characteristic spectrum. For this reason, no window is often called the

uniform or rectangular window because there is still a windowing effect.

The Hamming and Hann window functions both have a sinusoidal shape. Both windows result in a wide

peak but low side lobes. However, the Hann window touches zero at both ends eliminating all discon-

tinuity. The Hamming window doesn’t quite reach zero and thus still has a slight discontinuity in the

signal. Because of this difference, the Hamming window does a better job of cancelling the nearest

side lobe but a poorer job of canceling any others.

These window functions are useful for noise measurements where better frequency resolution than

some of the other windows is wanted but moderate side lobes do not present a problem.

2.3.3 The Rectangular Window

f (t) =


1 for − T/2 ≤ t ≤ T/2

0 else
(2.71)

has the power representation of the Fourier transform (see (2.43)):
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Figure 2.17: Rectangular window function and its Fourier transform in power representation.

|F (ω)|2 = T 2

(
sin(ωT/2)

ωT/2

)2

(2.72)

The rectangular window and this function are shown in Figure 2.17.

2.3.3.1 Zeroes

Where are the zeros of this function? We’ll find them at ωT/2 = lπ with l = 1, 2, 3, . . . and without

the zero! The zeros are equidistant, the zero at l = 0 in the numerator gets plugged by a zero in the
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denominator.

2.3.3.2 Intensity at the Central Peak

Now we want to find out how much intensity is at the central peak, and how much gets lost in the side-

bands (sidelobes). To get there, we need the first zero atωT/2 = π orω = ±2π/T and:∫ +2π/T

−2π/T

T 2

(
sin(ωT/2)

ωT/2

)2

dω
ωT/2=x
= T 2 2

T 2
2

∫ +2π

0

sin2 x

x
dx = 4T Si(2π) (2.73)

where Si(x) is the sine integral, defined as

Si(x) ≡
∫ x

0

sin y

y
dy (2.74)

The last passage in (2.73) may be proved as follows. We start out with∫ π

0

sin2 x

x
dx

and integrate per parts withu = sin2 x and v = −1/x:
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∫ π

0

sin2 x

x
dx =

sin2 x

x

∣∣∣∣π
0

+

∫ π

0

2 sinx cosx

x
dx

= 2

∫ π

0

sin 2x

2x
dx

2x=y
= Si(2π)

(2.75)

By means of the Parseval theorem (2.60) we get the total intensity∫ +∞

−∞
T 2

(
sin(ωT/2)

ωT/2

)2

dω = 2π

∫ +T/2

−T/2

12 dt = 2πT (2.76)

The ratio of the intensity at the central peak to the total intensity is therefore

4T Si(2π)
2πT

=
2

π
Si(2π) = 0.903

This means that ≈ 90% of the intensity is in the central peak, whereas some 10% are “wasted” in the

sidelobes.
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2.3.3.3 Sidelobe Suppression

Now let’s determine the height of the first sidelobe. To get there, we need:

d|F (ω)|2

dω
= 0 or also

dF (ω)

dω
= 0 (2.77)

and this occurs when

d

dx

sinx

x
= 0

x=ωT/2
=

x cosx− sinx

x2

Solving this transcendental equation gives us the smallest possible solutionx = 4.4934orω = 8.9868/T .

Inserting this value in |F (ω)|2 results in:∣∣∣∣F (8.9868T

)∣∣∣∣2 = T 2 × 0.04719 (2.78)

Forω = 0we get |F (0)|2 = T 2, the ratio of the first sidelobe height to the central peak height is there-

fore 0.04719. It is customary to express ratios between two values spanning several order of magnitude
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in decibel (short dB). The definition of decibel is

dB ≡ 10 log10 x (2.79)

Quite regularly people forget to mention what the ratio’s based on, which can cause confusion. Here

we’re talking about intensity-ratios. If we’re referring to amplitude-ratios, (that is, F (ω)), this would

make precisely a factor of two in logarithmic representation! Here we have a sidelobe suppression (first

sidelobe) of:

10 log10 0.04719 = −13.2 dB

2.3.3.4 3 dB Bandwidth

As the10 log10(1/2) = −3.0103 ≈ −3, the 3 dB bandwidth tells us where the central peak has dropped

to half its height. This is easily calculated as follows
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T 2

(
sin(ωT/2)

ωT/2

)2

=
1

2
T 2

Usingx = ωT/2we have

sin2 x =
x

2
or sinx =

x√
2

This transcendental equation has the following solution:

x = 1.3915, thusω3 dB =
2.783

T

This gives the total width (±ω3 dB):

∆ω =
5.566

T
(2.80)

This is the slimmest central peak we can get using Fourier transformation. Any other window function

will lead to larger 3 dB-bandwidths. Admittedly, it’s more than nasty to stick more than 10% of the infor-
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mation into the sidelobes. If we have, apart from the prominent spectral component, another spectral

component, with – say – an approx. 10 dB smaller intensity, this component will be completely smoth-

ered by the main component’s sidelobes. If we’re lucky, it will sit on the first sidelobe and will be visible;

if we’re out of luck, it will fall into the gap (the zero) between central peak and first sidelobe and will get

swallowed. So it pays to get rid of these sidelobes.

Warning! This 3 dB-bandwidth is valid for |F (ω)|2 and not for F (ω)! Since one often uses |F (ω)| or

the cosine-/sine-transformation one wants the 3 dB-bandwidth thereof, which corresponds to the 6 dB-

bandwidth of |F (ω)|2. Unfortunately, we cannot simply multiply the 3 dB-bandwidth of |F (ω)|2 by
√
2, we have to solve a new transcendental equation. However, it’s still good as a first guess because we

merely interpolate linearly between the point of 3 dB-bandwidth and the point of the 6 dB-bandwidth.

We’d overestimate the width by less than 5%.
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2.3.4 The Triangular Window (Fejer Window)

The first real weighting function is the triangular window:

f (t) =



1 +
2t

T
for − T/2 ≤ t ≤ 0

1− 2t

T
for 0 ≤ t ≤ T/2

0 else

(2.81)

Its Fourier transform is

F (ω) =
T

2

(
sin(ωT/4)

ωT/4

)2

(2.82)

The zeros are twice as far apart as in the case of the “rectangular function”: ωT/4 = lπ or ω = 4lπ/T

with l = 1, 2, 3, . . . The intensity at the central peak is 99.7%. The height of the first sidelobe is sup-

pressed by 2× (−13.2 dB) ≈ −26.5 dB. The 3 dB-bandwidth is computed as follows:
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sin
ωT

4
=

1
4
√
2

ωT

4
→ ∆ω =

8.016

T
full width

that is some 1.44 times wider than in the case of the rectangular window. The asymptotic behavior of

the sidelobes is−12 dB/octave.

2.3.5 The Gauss Window

A pretty obvious window function is the Gauss function.

f (t) =


exp

(
−1

2

t2

σ2

)
for − T/2 ≤ t ≤ +T/2

0 else
(2.83)

Its Fourier transform is

f (ω) = σ

√
π

2
e−

σ2ω2

4

[
erfc

(
−i

σ2ω2

√
2

+
T 2

8σ2

)
+ erfc

(
+i

σ2ω2

√
2

+
T 2

8σ2

)]
(2.84)

As the error function occurs with complex arguments, though together with the conjugate complex ar-
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Figure 2.18: Gauss window and power representation of the Fourier transform

gument,F (ω) is real. The function f (t)withσ = 2 and |F (ω)|2 is shown in Figure 2.18.

2.4 Windowing or Convolution?

In principle, we have two possibilities to use window functions:

❏ Either we weight, i.e. we multiply, the input by the window function and subsequently Fourier-

transform, or
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❏ We Fourier-transform the input and convolute the result with the Fourier transform of the window

function.

According to the Convolution Theorem (2.54) we get the same result. What are the pros and cons of

both procedures? There is no easy answer to this question. What helps in arguing is thinking in discrete

data. Take, e.g., a weighting window. Let’s start with a reasonable value for the its parameter, based

on considerations of the trade-off between 3 dB-bandwidth (i.e. resolution) and sidelobe suppression.

In the case of windowing we have to multiply our input data, say N real or complex numbers, by the

window function which we have to calculate atN points. After that we Fourier-transform. Should it turn

out that we actually should require a better sidelobe suppression and could tolerate a worse resolution –

or vice versa – we would have to go back to the original data, window them again and Fourier-transform

again.

The situation is different for the case of convolution: we Fourier-transform without any bias concern-
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ing the eventually required sidelobe suppression and subsequently convolute the Fourier data (again

N numbers, however in general complex!) with the Fourier-transformed window function, which we

have to calculate for a sufficient number of points. What is a sufficient number? Of course, we drop

the sidelobes for the convolution and only take the central peak! This should be calculated at least for

five points, better more. The convolution then actually consists of five (or more) multiplications and a

summation for each Fourier coefficient. This appears to be more work; however, it has the advantage

that a further convolution with another, say broader Fourier-transformed window function, would not

require to carry out a new Fourier transformation. Of course, this procedure is but an approximation

because of the truncation of the sidelobes. If we included all data of the Fourier-transformed window

function including the sidelobes, we had to carry outN (complex) multiplications and a summation per

point, already quite a lot of computational effort, yet still less than a new Fourier transformation. This

could be relevant for large arrays, especially in two or three dimensions like in image processing and

tomography.



Temporal Analysis on Digital Data
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As we have already mentioned, every observed signal we process must be of finite extent. Processing a

finite-duration observation imposes interesting and interacting considerations on the harmonic analy-

sis. Furthermore, for practicality the data we process areN uniformly (this condition can also be raised)

spaced samples of the observed signal. For convenience, N is highly composite, and we will assume

N is even. The harmonic estimates we obtain through the discrete Fourier transformation (DFT) are

N uniformly spaced samples of the associated periodic spectra. This approach is elegant and attractive

when the processing scheme is cast as a spectral decomposition in anN -dimensional orthogonal vector

space. Unfortunately, in many practical situations, to obtain meaningful results this elegance must be

compromised. One such compromise consists of applying windows to the sampled data set, or equiva-

lently, smoothing the spectral samples.

The two operations to which we subject the data are sampling and windowing. These operations can

be performed in either order. We will address the interacting considerations of window selection in

harmonic analysis and examine the special considerations related to sampled windows for DFT.
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3.1 Discrete Fourier Transformation

Often we do not know a function’s continuous “behavior” over time, but only what happens atN discrete

times:

tk = k∆t, k = 0, 1, 2, . . . , N − 1

In other words: we’ve taken our “pick”, that’s “samples” f (tk) = fk at certain points in time tk. Any

digital data-recording uses this technique. So the data set consists of a series{fk}. Outside the sampled

interval T = N∆t we don’t know anything about the function. The discrete Fourier transformation

(DFT) automatically assumes that {fk} will continue periodically outside the interval’s range. At first

glance this limitation appears to be very annoying, maybef (t) isn’t periodic at all, and even iff (t)were

periodic, there’s a chance that our interval happens to truncate at the wrong time (meaning: not after

an integer number of periods. See Figure 2.11a). To make life easier, we’ll also take for granted that N
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is a power of 2. We’ll have to assume the latter anyway for the Fast Fourier Transformation (FFT) which

we’ll cover in Section 3.5.

3.1.1 Even and Odd Series and Wrap-around

A series is called even if the following is true for all fk:

f−k = fk (3.1)

A series is called odd if the following is true for all fk:

f−k = −fk (3.2)

Please note that f0 is compulsory! Any series can be broken up into an even and an odd series. But what

about negative indices? We’ll extend the series periodically:

f−k = fN−k (3.3)
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correct

wrong

Figure 3.1: Correctly wrapped-around (top); incorrectly wrapped-around (bottom)

This allows us, by addingN , to shift the negative indices to the right end of the interval, or using another

word, “wrap them around”, as shown in Figure 3.1. Please make sure f0 doesn’t get wrapped, something

that often is done by mistake. The periodicity with period N , which we always assume as given for the

discrete Fourier transformation, requires fN = f0. In the second example – the one with the mistake –

we would get f0 twice next to each other (and apart from that, we would have overwritten f4).
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3.1.2 The Kronecker Symbol or the Discrete δ-Function

Before we get into the definition of the discrete Fourier transformation (forward and inverse transfor-

mation), a few preliminary remarks are in order. From the continuous Fourier transformation term eiωt

we get the discrete times tk = k∆t, k = 0, 1, 2, . . . , N − 1withT = N∆t:

exp(iωt) → exp

(
i
2πtk
T

)
= exp

(
i
2πk∆t

N∆t

)
= exp

(
2πi k

N

)
≡ W k

N (3.4)

We will use the abbreviation for the “kernel”WN as

WN = exp

(
2πi

N

)
(3.5)

Occasionally we will also use the discrete frequenciesωj

ωj =
2πj

N∆t
(3.6)

related to the discrete Fourier coefficientsFj (see below). The kernelWN has the following properties:
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W n
N
N = e2πi n = 1 for all integern

WN is periodic in j and k with periodN

(3.7)

We can define the discrete δ-function as follow:

N−1∑
j=0

W
(k−k′)j
N = N δk,k′ (3.8)

where δk,k′ is the Kronecker symbol with the following property:

δk,k′ =


1 for k = k′

0 else
(3.9)

This symbol (with prefactor N ) accomplishes the same tasks the δ-function had when doing the con-

tinuous Fourier transformation.
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3.1.3 Definition of the Discrete Fourier Transformation

Now we want to determine the spectral content {Fj} of the series {fk} using discrete Fourier transfor-

mation. For this purpose, we have to make the transition in the definition of the Fourier series:

cj =
1

T

∫ +T/2

−T/2

f (t) e−2πij/T dt −→ 1

N

N−1∑
k=0

fk e
−2πijk/N (3.10)

with f (t) periodic of periodT .

In the exponent we find k∆t/N∆t, meaning that ∆t can be eliminated. The prefactor contains the

sampling raster∆t, so the prefactor becomes∆t/T = ∆t/(N∆t) = 1/N . During the transition (3.10)

we tacitly shifted the limits of the interval from −T/2 to +T/2 to 0 to T , something that was okay, as

we integrate over an integer period and f (t) was assumed to be periodic of period T . The sum has to

come to an end atN − 1, as this sampling point plus∆t reaches the limit of the interval. Therefore we

get, for the discrete Fourier transformations:
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Definition 3.9 (Discrete Fourier transformations).

Fj =
1

N

N−1∑
k=0

fk W
−kj
N withWN = e2πi/N (3.11a)

fk =

N−1∑
j=0

Fj W
+kj
N withWN = e2πi/N (3.11b)

Please note that the inverse Fourier transformation (3.11b) doesn’t have a prefactor 1/N .

A bit of a warning is called for here. Instead of (3.11) we also come across definition equations with

positive exponents for the forward transformation and with negative exponent for the inverse trans-

formation. For example Press et al. use this convention, and this is what is used in X–ray astronomy (see

(5.1) at page 191). This doesn’t matter as far as the real part of {Fj} is concerned. The imaginary part

of {Fj}, however, changes its sign. Because we want to be consistent with the previous definitions of

Fourier series and the continuous Fourier transformation we’d rather stick with the definitions (3.11) and

remember that, for example, a negative, purely imaginary Fourier coefficient Fj belongs to a positive
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amplitude of a sine wave (given positive frequencies), as i of the forward transformation multiplied by

i of the inverse transformation results in precisely a change of sign i2 = −1.

Often also the prefactor 1/N of the forward transformation is missing (again this is the case for Press

et al.) This prefactor has to be there becauseF0 is to be equal to the average of all samples. As we will see,

also the Parseval theorem will be grateful if we stick with our definition of the forward transformation.

Using (3.8) we can see straight away that the inverse transformation (3.11b) is correct:

fk =

N−1∑
j=0

Fj W
+kj
N =

N−1∑
j=0

1

N

N−1∑
k′=0

fk′W
−k′j
N W+kj

N

=
1

N

N−1∑
k′=0

fk′
N−1∑
j=0

W
(k−k′)j
N =

1

N

N−1∑
k′=0

fk′N δk,k′ = fk

(3.12)

Ex. 3.1 Discrete Fourier Transformation: Constant function. Cosine function.
Sine function.
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3.2 Theorems and Rules

3.2.1 Linearity Theorem

If we combine in a linear way {fk} and its series {Fj}with {gk} and its series {Gj}, the we get:

{fk} ↔ {Fj}

{gk} ↔ {Gj}

a× {fk} + b× {gk} ↔ a× {Fj} + b× {Gj}

(3.13)

Please always keep in mind that the discrete Fourier transformation contains only linear operators, but

that the power representation is not a linear operation.

3.2.2 Shifting Rules
{fk} ↔ {Fj}

{fk−n} ↔ {FjW
−jn
N } n integer

(3.14)
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A shift in the time domain byn results in a multiplication by a phase factorW−jn
N . Let us proof it:

Proof.

F shifted
j =

1

N

N−1∑
k=0

fk−nW
−kj
N

k−n=k′
=

1

N

N−1−n∑
k′=−n

fk′W
−(k′+n)j
N

=
1

N

N−1∑
k′=0

fk′W
−k′j
N W−nj

N

= F old
j W−nj

N (3.15)

Because of the periodicity offk, we may shift the lower and the upper summation boundaries bynwith-

out a problem.

Ex. 3.2 First Shifting Rule: Shifted cosine withN = 2
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{fk} ↔ {Fj}

{fkW−nk
N } ↔ {Fj+n} n integer

(3.16)

A modulation in the time domain withW−nk
N corresponds to a shift in the frequency domain. The proof

is trivial.

Ex. 3.3 Second Shifting Rule: Modulated cosine withN = 2

3.2.3 Scaling Rule/Nyquist Frequency

We saw above that the highest frequency ωmax or also −ωmax corresponds to the center of the series of

Fourier coefficients. This we get by inserting j = N/2 in definition of the discrete frequency (3.6):

ωN/2 =
2π

N∆t

N

2
=

π

∆t
≡ ΩNyq (3.17)
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Figure 3.2: Two samples per period: cosine (left ); sine (right)

This frequency is called Nyquist frequency or cut-off frequency. This corresponds to take two samples per

period, as shown in Figure 3.2.

While we’ll get away with this in the case of the cosine it definitely won’t work for the sine! Here we

grabbed the samples at the wrong moment, or maybe there was no signal after all. In fact, the imaginary

part of fk at the Nyquist frequency always is 0. The Nyquist frequency therefore is the highest possible

spectral component for a cosine wave; for the sine it is only up to:

ω =
2π(N/2− 1)

N∆t
= ΩNyq(1− 2/N)

Equation (3.17) is our scaling theorem, as the choice of ∆t allows us to stretch or compress the time
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axis, while keeping the number of samples N constant. This only has an impact on the frequency scale

running from ω = 0 to ω = ΩNyq. ∆t doesn’t appear anywhere else! The normalization factor we

came across in (2.25) and (2.46), is done away with here, as using discrete Fourier transformation we

normalize to the number of samplesN , regardless of the sampling raster∆t.

3.3 Convolution, Parseval Theorem

Before we’re able to formulate the discrete versions of the (2.48), (2.56), (2.58), and (2.60), we have to

get a handle on two problems:

❏ The number of samplesN for the two functionsf (t)andg(t)we want to convolute or cross-correlate,

must be the same. This often is not the case, for example, iff (t) is the “theoretical” signal we would

get for a δ-shaped instrumental resolution function, which, however, has to be convoluted with the

finite resolution function g(t). There’s a simple fix: we pad the series {gk} with zeros so we get N
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interval

g−1 g0 g1

interval

g0 g1 g7

Figure 3.3: Resolution function {gk}: without wrap-around (left ); with wrap-around (right)

samples, just like in the case of series {fk}.

❏ Don’t forget, that{fk} is periodic inN and our “padded”{gk}, too. This means that negative indices

are wrapped-around to the right end of the interval. The resolution function g(t) mentioned in

Figure 3.3, which we assumed to be symmetrical, had three samples and got padded with five zeros

to a total ofN = 8 and is displayed in Figure 3.3.

As long as {fk} is periodic in N , there’s nothing wrong with the fact upon convolution data from the

end/beginning of the interval will be “mixed into” data from the beginning/end of the interval. If we

don’t like that – for whatever reasons – rather also pad{fk}with zeros, using precisely the correct num-
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ber of zeros so {gk}won’t create overlap between f0 and fN−1 any more.

3.3.1 Convolution

We will define the discrete convolution as follows:
Definition 3.10 (Discrete convolution).

hk ≡ (f ⊗ g)k =
1

N

N−1∑
l=0

fl gk−l (3.18)

The “convolution sum” is commutative, distributive and associative. The normalization factor 1/N in

context: the convolution of {fk} with the “discrete δ-function” {gk} = Nδk,0 is to leave the series {fk}

unchanged. Following this rule, also a “normalized” resolution function {gk} should respect the condi-

tion
∑N−1

k=0 = N . Unfortunately often the convolution also gets defined without the prefactor 1/N .

The Fourier transform of {hk} is
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Hj =
1

N

N−1∑
k=0

1

N

N−1∑
l=0

fl gk−lW
−kj
N

=
1

N 2

N−1∑
k=0

N−1∑
l=0

flW
−lj
N gk−lW

−kj
N W+lj

N

k′=k−l
=

1

N 2

N−1∑
l=0

flW
−lj
N

N−1−l∑
k′=−l

gk′W
−k′j
N

= Fj Gj

(3.19)

In our last step we took advantage of the fact that, due to the periodicity inN , the second sum may also

run from 0 toN − 1 instead of−l toN − 1− l. This, however, makes sure that the current index l has

been totally eliminated from the second sum, and we get the product of the Fourier transform Fj and

Gj . So we arrive at the discrete Convolution Theorem:

Theorem 3.8 (Discrete convolution theorem). Let be
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{fk} ↔ {Fj}

{gk} ↔ {Gj}

Then

{hk} = {(f⊗g)k} ↔ {Hj} = {Fj ×Gj} (3.20)

The convolution of the series {fk} and {gk} results in a product in the Fourier space.

Theorem 3.9 (Inverse discrete convolution theorem). Let be

{fk} ↔ {Fj}

{gk} ↔ {Gj}

Then

{hk} = {fk} × {gk} ↔ {Hj} = {N(F ⊗G)j} (3.21)
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Proof.

Hj =
1

N

N−1∑
k=0

fkgkW
−kj
N =

1

N

N−1∑
k=0

fkgk

N−1∑
k′=0

W−k′j
N δk, k

′

︸ ︷︷ ︸
k′-sum “artificially” introduced

=
1

N 2

N−1∑
k=0

fk

N−1∑
k′=0

gk′W
−k′j
N

N−1∑
l=0

W
−l(k−k′)
N︸ ︷︷ ︸

l−sum yieldsNδk,k′

=

N−1∑
l=0

1

N

N−1∑
k=0

fkW
−lk
N

1

N

N−1∑
k′=0

gk′W
−k′(j−l)
N

=

N−1∑
l=0

FlGj−l = N(F ⊗G)j

Ex. 3.4 Discrete Fourier Transform: Nyquist frequency withN = 8
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3.3.2 Cross Correlation

We define for the discrete cross correlation between {fk} and {gk}, similar to what we did in (2.56):
Definition 3.11 (Discrete cross correlation).

hk ≡ (f ⋆ g)k =
1

N

N−1∑
l=0

fl × g∗l+k (3.22)

If the indices at gk go beyond N − 1, then we’ll simply subtract N (periodicity). The cross correlation

between {fk} and {gk}, of course, results in a product of their Fourier transforms:

{fk} ↔ {Fj}

{gk} ↔ {Gj}

{hk} = {(f⋆g)k} ↔ {Hj} = {Fj ×G∗
j}

(3.23)
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Proof.

Hj =
1

N

N−1∑
k=0

1

N

N−1∑
l=0

fl g
∗
l+kW

−kj
N

=
1

N

N−1∑
l=0

fl
1

N

N−1∑
k=0

g∗l+kW
−kj
N

=
1

N

N−1∑
l=0

flG
∗
j W

−jl
N = Fj G

∗
j

3.3.3 Autocorrelation

Here we have {gk} = {fk}, which leads to

hk ≡ (f ⋆ f )k =
1

N

N−1∑
l=0

fl × f ∗
l+k (3.24)

and
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{fk} ↔ {Fj}

{hk} = {(f⋆f )k} ↔ {Hj} = {Fj × F ∗
j } = {|Fj|2}

(3.25)

In other words: the Fourier transform of the autocorrelation of {fk} is the modulus squared of the

Fourier series {Fj} or its power representation.

3.3.4 Parseval Theorem

We use (3.24) for k = 0, that ish0, and get on the one side:

h0 =
1

N

N−1∑
l=0

|fl|2 (3.26)

On the other hand, the inverse transformation of {Hj}, especially for k = 0, results in (see (3.11b))

h0 =

N−1∑
j=0

|Fj|2 (3.27)
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Put together, this gives us the discrete version of Parseval theorem:

1

N

N−1∑
l=0

|fl|2 =
N−1∑
j=0

|Fj|2 (3.28)

3.4 The Sampling Theorem

When discussing the Nyquist frequency, we already mentioned that we need at least two samples per

period to show cosine oscillations at the Nyquist frequency. Now we’ll turn the tables and claim that as

a matter of principle we won’t be looking at anything but functions f (t) that are “bandwidth-limited”,

meaning that outside the interval [−ΩNyq,ΩNyq] their Fourier transforms F (ω) are 0. In other words:

we’ll refine our sampling to a degree where we just manage to capture all the spectral components of

f (t). Now we’ll skillfully use formulas we’ve learned when dealing with the Fourier series expansion

and the continuous Fourier transformation with each other, and then pull the sampling theorem out of

the hat. For this purpose we will recall (2.16) and (2.17) which show that a periodic function f (t) can be
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expanded into an (infinite) Fourier series:

f (t) =

∞∑
k=−∞

Cke
iωkt ωk =

2πk

T

Ck =
1

T

∫ +T/2

−T/2

f (t) e−iωkt dt for k = 0,±1,±2, . . .

Since F (ω) is 0 outside [−ΩNyq,ΩNyq], we can continue this function periodically and expand it into an

infinite Fourier series. So we replace: f (t) → F (ω), t → ω,T/2 → ΩNyq, and get

F (ω) =

∞∑
k=−∞

Cke
iπkω/ΩNyq

Ck =
1

2ΩNyq

∫ +ΩNyq

−ΩNyq

F (ω) e−iπkω/ΩNyq dω

(3.29)

A similar integral also occurs in the defining equation for the inverse continuous Fourier transformation

(see (2.35)):
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f (t) =
1

2π

∫ +ΩNyq

−ΩNyq

F (ω) eiωt dω (3.30)

The integrations boundaries are ±ΩNyq, as F (ω) is band-limited. By comparing (3.30) with (3.29) we

have

∫ +ΩNyq

−ΩNyq

F (ω)e−iπkω/ΩNyq dω = 2Ck ΩNyq∫ +ΩNyq

−ΩNyq

F (ω) eiωt dω = 2π f (t)

and the two integrals are the same if

−iπkω/ΩNyq = iωt → t = − π k

ΩNyq

therefore
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2ΩNyqCk = 2πf (−πk/ΩNyq) (3.31)

Once we have inserted this in (3.29) we get:

F (ω) =
π

ΩNyq

+∞∑
k=−∞

f (−πk/ΩNyq) e
iπkω/ΩNyq (3.32)

When we finally insert this expression in the defining equation (3.30), we get:

f (t) =
1

2π

∫ +ΩNyq

−ΩNyq

π

ΩNyq

+∞∑
k=−∞

f (−πk/ΩNyq) e
iπkω/ΩNyq eiωt dω

=
1

2ΩNyq

+∞∑
k=−∞

f (−k∆t) 2

∫ +ΩNyq

0

cosω(t + k∆t) dω

=
1

ΩNyq

+∞∑
k=−∞

f (−k∆t)
sin ΩNyq(t + k∆t)

(t + k∆t)

(3.33)

where we have defined ∆t = π/ΩNyq. By replacing k → −k (it’s not important in which order the
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sums are calculated) we get the Sampling Theorem:

Theorem 3.10 (Sampling theorem). If a function f (t) contains no frequencies higher that W cps (that is is

“bandwidth-limited”), then it is completely determined by giving its ordinates at a series of points spaced 1/2W

apart. By choosingW = ΩNyq we obtain

f (t) =

+∞∑
k=−∞

f (k∆t)
sin ΩNyq(t− k∆t)

ΩNyq(t− k∆t)
(3.34)

In other words, we can reconstruct the function f (t) for all times t from the samples at the times k∆t,

provided the functionf (t) is bandwidth-limited. To achieve this, we only need to multiplyf (k∆t)with

the function (sinx/x) (with x = ΩNyq(t − k∆t)) and sum up over all samples. The factor (sinx/x)

naturally is equal to 1 for t = k∆t, for other times, (sinx/x) decays and slowly oscillates towards zero,

which means, that f (t) is a composite of plenty of (sinx/x)-functions at the location t = k∆t with

the amplitude f (k∆t). Note that for adequate sampling with ∆t = π/ΩNyq, each k-term in the sum

in (3.34) contributes f (k∆t) at the sampling points t = k∆t and zero at all other sampling points
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whereas all terms contribute to the interpolation between sampling points.

Ex. 3.5 Sampling theorem withN = 2

3.4.1 Aliasing

What happens if, for some reason or other, our sampling happens to be too coarse and F (ω) above

ΩNyq was unequal to 0? In Figure 3.4 we show a case, in which the original signal (in red) is sampled at a

frequency such that only one data point is tracked per period (the blue dots). The blue line represents

the reconstructed signal: the amplitude is correct but the frequency is not.

In order to correctly reconstruct not only the amplitude but also the frequency content of the signal, we

need at least two points per period. And the reason is evident from Figure 3.5: on the left we show the

sampling of a sine wave when only one point is sampled per period,fs = fsine. In this case the amplitude
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Figure 3.4: Aliasing is caused when the digital sampling rate is not adequate to capture the fluctuations in an analog signal, and results in the wrong
frequency being identified. The red sine wave is the original signal. The blue dots represent how often the signal is being sampled. The blue line is
how the signal will appear at the wrong frequency due to the low sampling rate.

of the reconstructed signal is zero. On the other hand, when we have at least two points sampled per

period (fs = 2fsine), we are able to extract the true frequency of the sine wave.

Therefore, to properly sample all the desired frequency content of an incoming signal, one must sam-

ple at (or above) the Nyquist rate. In data acquisition, the sampling frequency is twice as high as the

specified bandwidth. So, all frequency content below the specified bandwidth will be sampled at a rate

sufficient to accurately capture the frequency content.
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Figure 3.5: fs represents the sampling frequency, fsine represents the frequency of the sine wave. a) When sampling at the same frequency as the
incoming signal, the observed frequency is zero Hertz. b) When sampling at twice the frequency of the sine wave, the observed frequency isfsine, the
true frequency of the sine wave.

When the incoming signal contains frequency content above the specified bandwidth, the sampling

frequency (2 times the bandwidth) will violate the Nyquist theorem (Eq. 3.34) for this higher frequency

content.

When the Nyquist theorem is violated, spectral content above the bandwidth is mirrored about the

bandwidth frequency in an accordion-plated fashion. Specifically, for any frequencyω in the range 0 ≤

ω ≤ ΩNyq, the higher frequencies which are aliased withω are defined by
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(2ΩNyq ± ω), (4ΩNyq ± ω), . . . , (2kΩNyq ± ω), . . . (3.35)

To prove this, observe that, for t = (2π)/(2ΩNyq) = π/ΩNyq

cosωt = cos

[
(2kΩNyq ± ω)

π

ΩNyq

]
= cos

(
2k π ± π

ω

ΩNyq

)
= cos

(
π

ω

ΩNyq

)
(3.36)

Thus all data at frequencies 2kΩNyq ± ω have the same cosine function as data at frequency ω when

sampled at points π/ΩNyq apart. The same for the sine function. For example, if ΩNyq = 100 cps, then

data at 30 cps would be aliased with data at frequencies 170 cps, 230 cps, 370 cps, 430 cps, and so forth.

Similarly, the power at these confounding frequencies is aliased with the power in the lower frequen-

cies, because the power quantities depends on terms containing sin2 and cos2 functions.

Thus, higher frequency content appears to be at a lower frequency, or an “alias" frequency, as shown

in Figure 3.6. In other words: spectral density that would appear at ≈ 2ΩNyq, appears at ω ≈ 0! This

“corruption” of the spectral density through insufficient sampling is called aliasing, similar to someone
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Figure 3.6: Aliasing causes frequency above the bandwidth to be mirrored across the bandwidth.

acting under an assumed name. In a nutshell: when sampling, rather err on the fine side than the coarse

one! Coarser rasters can always be achieved later on by compressing data sets, but it will never work the

other way, round!

Let us see how the choice of the frequency resolution affects the signal processing. Because the “golden

equation” of digital processing∆ f = 1/T , we have

• The finer the desired frequency resolution, the longer the acquisition time;

• The shorter the acquisition time, or frame size, the coarser the frequency resolution.
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Figure 3.7: Left: Spectrum with 1.0 Hertz frequency resolution makes two separate tones appear as one peak. Right: Spectrum with 0.5 Hertz fre-
quency resolution makes two separate tones appear as two different peaks.

In Figure 3.7 two sine tones (100 Hertz and 101 Hertz) have been digitized, and a Fourier Transform per-

formed. This was done with two different frequency resolutions: 1.0 Hertz and 0.5 Hertz.

With the finer frequency resolution of 0.5 Hertz, rather than 1.0 Hertz, the spectrum shows two sepa-

rate and distinct peaks. The benefit of a finer frequency resolution is very obvious. This might beg the

question, why not use the finest frequency resolution possible in all cases?

There is a tradeoff. Per the “golden equation" the amount of time data per frame is higher as the fre-

quency resolution is made finer. This can cause requirements for long time data acquisition:



M.Orlandini Temporal Data Analysis 146

◦ 10 Hz frequency resolution is desired, only 0.1 seconds of data is required

◦ 1 Hertz frequency resolution requires 1 second of data

◦ 0.1 Hertz frequency resolution requires 10 seconds of data

◦ 0.01 Hertz frequency resolution requires 100 seconds of data!

In some situations, these long time acquisition requirements are not practical. For example, a sports car

may go from idle to full speed in just 4 seconds, making a 100 second acquisition, and the corresponding

0.01 frequency resolution, impossible.

Rather than using the sine formulation of the Fourier Transform, a wavelet formulation can be used

instead (see Section 3.6 for a brief introduction on the wavelet transform). This can address some of the

time-frequency tradeoffs.

As we will see into detail in Part II, two practical methods exist for handling this aliasing problem. The

first method is to choose the Nyquist frequency sufficiently large so that it is physically unreasonable

for data to exist aboveΩNyq. In general, it is a good rule to selectΩNyq to be one-and-a-half or two times
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greater that the maximum anticipated frequency. The choosingΩNyq equal to the maximum frequency

of interest will give accurate results for frequencies belowΩNyq.

The second method is to filter the data prior to sampling so that the information above a maximum

frequency of interest is no longer contained in the filtered data.

An anti-aliasing filter is a low-pass filter that removes spectral content that violates the Nyquist crite-

ria. This makes it so a 125 Hertz sine wave does not show up as 75 Hertz. The ideal anti-aliasing filter

would be shaped like a “brick wall”, completely attenuating all signals beyond the specified bandwidth,

as shown in the left panel of Figure 3.8.

In the real world, it is impossible to have this “wall shaped” filter. Instead, a very sharp analog filter is

used that has a -3dB roll off at the bandwidth and attenuates all frequencies 20% beyond the band-

width to zero as shown in in the right panel of Figure 3.8. This is why the “trustable", alias-free region

of the spectrum is from zero Hz to 80% of the bandwidth. This alias-free range is called the frequency

span.
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Figure 3.8: Right: The ideal anti-aliasing filter would be shaped like a wall: cutting off all frequencies beyond the specified bandwidth (fs/2). Right:
The anti-aliasing filter has a -3dB roll off point at the bandwidth.

3.4.2 Application to Multi-Variable Signals and Images

The sampling theorem is usually formulated for functions of a single variable. Consequently, the theo-

rem is directly applicable to time-dependent signals and is normally formulated in that context. How-

ever, the sampling theorem can be extended in a straightforward way to functions of arbitrarily many

variables. Gray-scale images, for example, are often represented as two-dimensional arrays (or matri-

ces) of real numbers representing the relative intensities of pixels (picture elements) located at the in-
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tersections of row and column sample locations. As a result, images require two independent variables,

or indices, to specify each pixel uniquely – one for the row, and one for the column.

Similar to one-dimensional discrete-time signals, images can also suffer from aliasing if the sampling

resolution, or pixel density, is inadequate. For example, a digital photograph of a striped shirt with high

frequencies (in other words, the distance between the stripes is small), can cause aliasing of the shirt

when it is sampled by the camera’s image sensor. The aliasing appears as a Moire pattern (see Figure 3.9).

The “solution” to higher sampling in the spatial domain for this case would be to move closer to the shirt,

use a higher resolution sensor, or to optically blur the image before acquiring it with the sensor.

3.4.3 Geometrical Representation of the Signal

Let us discuss on the sampling theorem in a different way. The 2TW evenly spaced samples of a signal

f (t) can be thought of as coordinates of a point in a space of 2TW dimensions. Each particular selec-

tion of these numbers corresponds to a particular point in this space. Thus there is exactly one point
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Figure 3.9: Aliasing in images: On the left a properly sampled image of a brick wall. On the right a spatial aliasing creates a Moire pattern
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corresponding to each signal in the band and with durationT .

The number of dimensions 2TW will be, in general, very high, and needless to say, such a space cannot

be visualized. It is possible, however, to study analytically the properties of ann-dimensional space. To

a considerable extent, these properties are a simple generalization of the properties of two- and three-

dimensional space, and can often be arrived at by inductive reasoning from these cases.

The advantage of this geometrical representation of the signals is that we can use the vocabulary and

the results of geometry. If we imagine the2TW coordinate axes to be at right angles to each other, then

distances in the space have a simple interpretation. The distance from the origin to a point is analogous

to the two- and three-dimensional cases

d =

√√√√2TW∑
k=1

x2k (3.37)

wherexk is the kth sample. From the sampling theorem (3.34) we have
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f (t) =

2TW∑
k=1

xk
sin π(2Wt− k)

π(2Wt− k)
(3.38)

therefore ∫ +∞

−∞
f (t)2 dt =

1

2W

2TW∑
k=1

x2k (3.39)

where we used the property

∫ +∞

−∞

sin π(2Wt− k)

π(2Wt− k)

sin π(2Wt− l)

π(2Wt− l)
dt =


0 k ̸= l

1

2W
k = l

Hence the square of the distance to a point is 2W times the energy of the corresponding signal

d2 = 2W E = 2W (TP ) (3.40)

where P is the average power over the time T . If we consider only signals whose average power is less
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thanP , these will correspond to points within a sphere of radius r =
√
2W TP . If noise is added to the

signal in transmission, it means that the point corresponding to the signal has been moved a certain

distance in the space proportional to the rms value of the noise. Thus noise produces a small region of

uncertainty about each point in the space.

3.5 Fast Fourier Transform

Cooley and Tukey started out from the simple question: what is the Fourier transform of a series of num-

bers with only one real number (N = 1)? There are at least 3 answers:

❏ From (3.11a) withN = 1 follows:

F0 =
1

1
f0W

−0
1 = f0 (3.41)

❏ From the Parseval theorem (2.60) follows:
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|F0|2 =
1

1
|f0|2 (3.42)

Because f0 is real and even, this leads to F0 = ±f0. Furthermore, F0 is also to be equal to the

average of the series of numbers, so there is no chance to get the minus sign.

❏ We know that the Fourier transform of a δ-function results in a constant and vice versa. How do we

represent a constant in the world of 1-term series? By using the number f0. How do we represent

in this world a δ-function? By using this number f0. So in this world there’s no difference any more

between a constant and a δ-function. Result: f0 is its own Fourier transform.

This finding, together with the trick to achieve N = 1 by smartly halving the input again and again

(that’s why we have to stipulate: N = 2p, p integer), (almost) saves us the Fourier transformation. For

this purpose, let’s first have a look at the first subdivision. We’ll assume as given: {fk} with N = 2p.

This series will get cut up in a way that one sub-series will only contain the even elements and the other
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sub-series only the odd elements of {fk}:

{f1,k} = {f2k} k = 0, 1, 2, . . . ,M − 1

{f2,k} = {f2k+1} M = N/2

(3.43)

Proof.

f1,k+M = f2k+2M = f2k = f1,k (3.44)

because of 2M = N and f periodic inN . Analogously for f2,k.

The respective Fourier transforms are:

F1,j =
1

M

M−1∑
k=0

f1,k W
−kj
M

F2,j =
1

M

M−1∑
k=0

f2,k W
−kj
M

(3.45)

The Fourier transform of the original series is:
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Fj =
1

N

N−1∑
k=0

fk W
−kj
N

=
1

N

M−1∑
k=0

f2k W
−2kj
N +

1

N

M−1∑
k=0

f2k+1W
−(2k+1)j
N

=
1

N

M−1∑
k=0

f1,k W
−kj
M +

W−j
N

N

M−1∑
k=0

f2,k W
−kj
M j = 0, 1, 2, . . . , N − 1

(3.46)

In our last step we used:

W−2kj
N = e−2×2πikj/N = e−2πikj/(N/2) = W−kj

M

W
−(2k+1)j
N = e−2πi(2k+1)j/N = W−kj

M W−j
N

Together we get (remember thatN = 2M ):

Fj =
1

2
F1,j +

1

2
W−j

N F2,j j = 0, 1, 2, . . . , N − 1
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or better

Fj =
1

2
(F1,j +W−j

N F2,j)

Fj+M =
1

2
(F1,j −W−j

N F2,j)

(3.47)

Please note that in (3.47) we allowed j to run from 0 to M − 1 only. In the second line in front of F2,j

there really should be the factor:

W
−(j+M)
N = W−j

N W−M
N = W−j

N W
−N/2
N = W−j

N e−2πiN2 /N

= W−j
N e−iπ = −W−j

N

(3.48)

This “decimation in time” can be repeated until we finally end up with 1-term series whose Fourier trans-

forms are identical to the input number, as we know. The normal Fourier transformation requires N 2

calculations, whereas here we only need pN = N lnN .

Ex. 3.6 FFT: Saw-tooth withN = 2 andN = 4
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3.6 The Wavelet Transform

As we have discussed in Section 3.5, the traditional FFT decomposes a time signal into its component

sine functions of various frequency, amplitude, and phase.

From there, a spectrum (a plot of amplitude vs frequency) is generated. It is possible to calculate many

spectra for a single signal to see how the amplitudes and frequencies change with time.

When calculating a spectrum, there is an inverse relationship between observation time and frequency

resolution (the so called “golden equation” discussed in Section 3.4.1, page 144). Essentially, the longer

the time-chunk that is analyzed, the finer the frequency resolution that can be obtained in the spec-

trum.

This means that when analyzing very short-time events (transients) with a short time window, the fre-

quency resolution is forced to be rather coarse. If the frequency resolution is refined, the time block will

be much greater than the transient event.
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Therefore, when doing an FFT on short time duration events, there is a fair bit of smearing in the fre-

quency domain due to coarse frequency resolution. When attempting to dial in a finer frequency reso-

lution, the time domain resolution will suffer (Figure 3.10). This is a disadvantage when using the FFT

on short-time events.

On the other hand, the signal can be decomposed into wavelets (instead of sine functions). A wavelet is

a function that rapidly increases, oscillates about a zero mean, and rapidly decays (see Figure 3.11).

In order to understand how wavelets correspond to frequency and time, let’s take a look at scaling and

shifting.

Scaling is straight forward, the wavelet is simply stretched or compressed in time.

A stretched wavelet (Figure 3.11, left) helps quantify the slow changing portion of a signal (low fre-

quency) while a compressed wavelet (Figure 3.11, right) helps quantify the abruptly changing (high fre-

quency) content of the signal.

The wavelet in the frequency domain has a band-pass characteristic. By stretching and compressing the
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Figure 3.10: Top: Time signal of transient event. Middle: FFT with a 0.02 second frame size resulting in 50Hz frequency resolution. Fine time reso-
lution, coarse frequency resolution. Bottom: FFT with a 0.20 second frame size resulting in 5Hz frequency resolution. Finer frequency resolution,
coarser time resolution.
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Figure 3.11: Comparison of a sine wave vs a wavelet function. A sine wave oscillates in time from negative infinity to infinity. Contrarily, a wavelet
oscillates for a short time duration.

wavelet, the center frequency of the band-pass filter is shifted higher or lower.

The output of the wavelet analysis is frequency (scale) vs time (shift). The wavelet is both shifted and

scaled to determine how it aligns with various features of the signal.

For the purposes of simplicity, imagine that the wavelet is shifted though the time data. At each loca-

tion, the shape of the wavelet is “compared” to the shape of the time data. Similarities between the

time data and wavelet indicate that the frequency content that the wavelet represents is present (Fig-

ure 3.13).
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Figure 3.12: Stretched wavelets (left) represent lower frequencies, while compressed wavelets (right) represent higher frequencies.

Figure 3.13: Shifting of a wavelet though time data: from left to right the wavelet is shifted in time relative to the signal being analyzed.
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Wavelets of different scales and shifts are convolved with the original signal to determine if the original

signal has similar frequency content.

• Each wavelet has a corresponding “frequency", and the result of the convolution will determine if

the original signal at that particular shift (time) also contains that same frequency.

• Therefore, it can be determined what frequency content is present at what time via wavelet analy-

sis.

Essentially, wavelets can be thought of as a discrete-time filter-bank of band-pass filters.

So, what are the main differences between FFT and Wavelet? By nature of the processing type, the tradi-

tional FFT has a fixed relationship between time and frequency. Conversely, the wavelet does not have

a fixed relationship between time and frequency.

As shown in Figure 3.14, wavelets have different behavior at different frequencies:

❏ At lower frequencies, the data will be finer in the frequency domain, and more smeared in the time
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Figure 3.14: Change of frequency resolution in FFT and wavelet analysis. Left: The FFT smear and resolution is equal at all frequencies. Right: Con-
versely, wavelets have a variable relationship between time and frequency.

domain. At lower frequencies, octave bands are narrower, resulting in less smearing. At high fre-

quencies, octave bands are broader resulting in more smearing.

❏ At higher frequencies, the data will be finer resolution in the time domain, and more smeared in

the frequency domain The change in time resolution is due to the stretching of the wavelets at low

frequency and the shrinking of wavelets at high frequency.

The change in the frequency resolution is due to the fact that the frequency scale for the wavelet pro-
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cessing is based on octaves.

Figure 3.15 shows the wavelet result of a transient event. Look at the right side of Figure 3.14 to better

understand how data is smeared in a wavelet map as shown in Figure 3.15.

An impulse in the time domain is represented by broadband frequency response in the frequency do-

main. Most transient events are “impulsive" in nature and therefore have a rather broadband signature

in the frequency domain. Therefore, a fine frequency resolution at high frequencies is typically not nec-

essary. However, the improved time resolution the wavelet has to offer can be hugely beneficial when

analyzing transients.

3.6.1 Fourier Transform vs Wavelet

Let’s take a closer look at the results to better understand the differences between FFT and wavelet anal-

ysis. The colormap results for both the FFT and wavelet transformations are created by stacking a series

of tracked results together.
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Figure 3.15: In a wavelet analysis, at low frequencies the frequency resolution is finer. At high frequencies, the time resolution is finer.
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In the case of the FFT, for each time increment an “amplitude vs frequency" result is created. These re-

sults are stacked together to create the colormap.

In Figure 3.16a, each individual calculation of “amplitude vs frequency" in the “waterfall" map display

(left) is shown. These individual calculations are smoothed together to create the “colormap" display

on the right.

Alternatively, the wavelet analysis (3.17a) will create an “amplitude vs time" result for each frequency

increment (as specified by the wavelets per octave setting). These individual calculations (as seen in

the waterfall display, left) are smoothed together to create the “colormap" display on the right.

To conclude the comparison between Fourier and wavelet transform, let us analyze a real case: piston

slap noise. Piston slap occurs when the piston inside of a cylinder hits the cylinder wall during the oper-

ating cycle. This causes an audible transient noise.

It may be desired to know the timing of the piston slap. Traditional FFT methods do not make it obvious

when the piston slap occurs. Alternatively, the wavelet analysis highlights the timing and the frequency
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(a) The Fourier transform results in amplitude vs frequency spectra for each increment in time.

Figure 3.16: Comparison of Fourier and wavelet transform analysis. These results are smoothed together to create the colormap on the right.



M.Orlandini Temporal Data Analysis 169

(a) The wavelet analysis results in time versus amplitude results for each frequency increment.

Figure 3.17: Comparison of Fourier and wavelet transform analysis. These results are smoothed together to create the colormap on the right.
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content of the piston slap.

In Figure 3.18, time vs pressure data from a microphone near an engine block is displayed (top). Some of

the transient events are highlighted. This data is analyzed in two way: FFT (middle) and wavelet (bot-

tom).

The wavelet has much better time resolution. The FFT is smeared both in the time domain and the

frequency domain.



M.Orlandini Temporal Data Analysis 171

Figure 3.18: Fourier and wavelet transform analysis on a piston slap noise. Top: Time history with multiple transient events. Middle: FFT versus Time
analysis does not contain clear indication of the exact timing and frequency content of the transient events. Bottom: Wavelet analysis shows both
time and frequency content of transients accurately.
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The procedures for analyzing the properties of random data may be divided logically into two cate-

gories: the procedures for analyzing individual sample records, and the procedures for analyzing a col-

lection of sample records given the properties of the individual records. Applicable data analysis proce-

dures for these two categories will be now outlined.

4.1 Procedures for Analyzing Individual Records

An overall procedure for analyzing pertinent statistical properties of individual sample time history

records is presented in Figure 4.1. Note that many of the suggested steps in the procedure might be

omitted for some applications while additional steps would be required for other applications. Each

block in Figure 4.1 will now be discussed.
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D.
PROBABILITY

DENSITY ANALYSIS

C.
POWER SPECTRAL

DENSITY ANALYSIS

B.
AUTOCORRELATION

ANALYSIS

A.
MEAN AND MEAN SQUARE

VALUE ANALYSIS

TEST FOR
NORMALITY

TEST FOR
PERIODICITIES

TEST FOR
STATIONARITY

G.
SPECIALIZED DATA

ANALYSIS

F.
PERIODIC AND ALMOST-

PERIODIC DATA ANALYSIS

E.
NONSTATIONARY AND

TRANSIENT DATA ANALYSIS

MAY BE STATIONARY AND RANDOM OBVIOUSLY NONSTATIONARY OR NONRANDOM

NON-GAUSSIAN

PERIODIC OR
ALMOST PERIODIC

NONSTATIONARY

QUALIFICATION

STATIONARY

STATIONARY AND
RANDOM (WITH
PERIOCITIES
IDENTIFIED OR
REMOVED)

Figure 4.1: General procedure for analyzing individual sample records
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4.1.1 Mean and Mean Square Value Analysis

The first step indicated by Block A is a mean and mean square value (or variance) measurement (also

called ANOVA, ANalysis Of VAriance). This step is almost universally performed for one or more of three

sound reasons:

➀ Since the mean and the mean square values are the basic measures of central tendency and disper-

sion, their calculation is generally required for even the most rudimentary applications.

➁ The calculation of a short time averaged mean and mean square value estimates provides a basis

for evaluating the stationarity of the data.

➂ Mean and mean square value estimates can be extracted from other descriptive properties (proba-

bility density plots, correlograms, and/or power spectra) which might be measured later. The com-

parison of directly measured mean and mean square values estimates to the corresponding esti-

mates extracted from other analyses provides an excellent method for checking the data analysis
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equipment or computer programs for correct operation.

4.1.2 Autocorrelation Analysis

The next suggested analysis is autocorrelation, as indicated by Block B. The autocorrelation function of

stationary data is the inverse Fourier transform of the power spectral density function (see (3.25)). Thus

the determination of the autocorrelation function will technically not yield any new information over

the power spectrum. There might be applications, however, when an autocorrelogram would present

the desired information in a more convenient format. Autocorrelation functions can be a useful tool

for detecting periodicities in otherwise random data. Furthermore, autocorrelation functions might be

computed as an intermediate step in the calculation of power spectral estimates.
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4.1.3 Power Spectral Density Analysis

Perhaps the most important single descriptive characteristic of stationary random data is the power

spectral density function, which defines the frequency composition of the data. For constant parame-

ter linear physical systems, the output power spectrum is equal to the input power spectrum multiplied

by the square of the gain factor of the system. Thus power spectra measurements can yield informa-

tion concerning the dynamic characteristics of the system. The total area under a power spectrum (that

is
∫
|F (ω)|2 dω) is equal to the mean square value. To be more general, the mean square value of the

data in any frequency range of concern is determined by the area under the power spectrum bounded

by the limits of that frequency range. Obviously, the measurement of power spectra data, as indicated

in Block C, will be valuable for many analysis objectives, like detection of periodicities and as an inter-

mediate step in the calculation of autocorrelation functions.
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4.1.4 Probability Density Analysis

The last fundamental analysis included in the procedure is probability density analysis, as indicated

by Block D. Probability density analysis is often omitted from a data analysis procedure because of the

tendency to assume that all random phenomena are normally distributed (this analysis is performed

in the so-called Exploratory Data Analysis – EDA). In some cases, however, random data may deviate

substantially from the Gaussian form. If such deviations are detected by a test for normality, then the

probability density function of the data must be measured to establish the actual probabilistic charac-

teristics of the data. Furthermore, a probability density function estimate is sometimes used as a basis

for a normality test.

4.1.5 Nonstationary and Transient Data Analysis

All of the analysis techniques discussed so far apply only to sample records of stationary data. If the

data are determined to be nonstationary during the qualification phase of the processing, then special
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analysis techniques will be required as indicated by Block E. Note that certain classes of nonstationary

data can be sometimes be analyzed using the same equipment or computer programs employed for

stationary data analysis. However, the results of such analyses must be interpreted with caution.

4.1.6 Periodic and Almost-Periodic Data Analysis

If sinusoids due to periodic or almost-periodic contributions are detected in the data during the qual-

ification phase, then special attention is warranted. Specifically, one of two approaches should be fol-

lowed. First, the sinusoidal components might be isolated from the random portion of the data by fil-

tering operations and analyzed separately, as illustrated by Block F. Second, the sinusoidal components

might be analyzed along with the random portion of the data, and simply accounted for in the results.

For example, if a power spectrum is computed for data which include sinusoidal components, a delta

function symbol might be superimposed on each spectral peak at the frequency of an identified sinu-

soid, and labeled with the mean square value of the sinusoid. The mean square value can be estimated
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from the spectral plot by multiplying the maximum indicated spectral density of the peak by the resolu-

tion bandwidth used for the analysis. If this is not done, the physical significance of such spectral peaks

might be misinterpreted.

4.1.7 Specialized Data Analysis

Various other analyses of individual time history records are often required, depending upon the spe-

cific goals of the data processing. For example, studies of fatigue damage in mechanical systems usu-

ally involve the calculation of peak probability density functions of strain data. Spectral descriptions

other than power spectral density functions are sometimes desired: for example, the spectra for acous-

tic noise levels are commonly presented in terms of rms values in 1/1 or 1/3 octave frequency bands. Such

specialized analyses, as indicated by Block G, must be established in the context of specific engineering

problem of concern.
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4.2 Procedures for Analyzing a Collection of Records

The preceding Section presented methods for analyzing each individual sample record from an experi-

ment. A procedure for analyzing further pertinent statistical properties of a collection of sample records

is presented in Figure 4.2. As for the analysis of individual sample records outlined in Figure 4.1, many of

the suggested steps in Figure 4.2 might be omitted for some applications while additional steps would

be required for others. Furthermore, the suggested steps assume the individual records are stationary.

4.2.1 Analysis of Individual Records

The first step is to analyze the pertinent statistical properties of the individual sample records, as out-

lined in Figure 4.1. Hence the applicable portions of Figure 4.1 constitute Block A in Figure 4.2.
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A.
ANALYSIS OF

INDIVIDUAL RECORDS

B.
TEST FOR CORRELATION

AMONG RECORDS

C.
TEST FOR EQUIVALENCE

OF UNCORRELATED DATA

E.
CROSS–CORRELATION

ANALYSIS

F.
CROSS–SPECTRAL

DENSITY ANALYSIS

H.
FREQUENCY RESPONSE

ANALYSIS

D.
POOLING OF EQUIVALENT

UNCORRELATED DATA

G.
COHERENCE

ANALYSIS

I.
OTHER DESIRED

MULTIPLE ANALYSIS

UNCORRELATED

CORRELATED

Figure 4.2: General procedure for analyzing a collection of sample records
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4.2.2 Test for Correlation

The next step indicated by Block B is to determine whether or not the individual sample records are cor-

related. In many cases, this decision involves little more than a cursory evaluation of pertinent physical

considerations. For example, if the collection of sample records represent measurements of a physical

phenomenon over widely separated time intervals, then usually the individual records can be accepted

as uncorrelated without further study. On the other hand, if the collection represents simultaneous

measurements of the excitation and response of a physical system, the correlation would be antici-

pated. For those cases where a lack of correlation is not obvious from basic considerations, a test for

correlation among the sample records should be performed using cross correlation functions or coher-

ence functions.
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4.2.3 Test for Equivalence of Uncorrelated Data

If sample records are found to be uncorrelated in Block B, then these records should be tested for equiv-

alent statistical properties as indicated by Block C. This is an important but often overlooked step in

the analysis of random data. Far too often the analyzed results for a large number of sample records

are presented as individual plots when in fact the results differ only by the amounts which fall within

the acceptable limits of random error. The formal presentation of such redundant data is usually of no

value, and can be detrimental in several ways. First, large quantities of analyzed data will sometimes

tend to overwhelm the user and unnecessarily complicate the interpretation of the results. Second, the

unsophisticated user might interpret the statistical scatter in individual results as physically meaning-

ful differences. Third, more accurate results could be presented for the equivalent data if they were

pooled prior of plotting, as will be discussed in the next Section. Note that for most applications, an

equivalence of power spectra is a sufficient criterion for equivalence of sampled data.
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4.2.4 Pooling of Equivalent Uncorrelated Data

The analyzed results for individual sample records which are found to represent equivalent data should

be pooled together as indicated by Block D. This is dome by computing appropriately weighted averages

of the results for the individual records. For example, assume two power spectral density function esti-

mates were computed from two uncorrelated sample records which now we found to represent equiv-

alent data. If G1(ω) and G2(ω) were the original power spectral estimates with n1 and n2 sampled

points, respectively, a new pooled estimate for the power spectrum is given by

Gp(ω) =
n1G1(ω) + n2G2(ω)

n1 + n2
(4.1)

whereGp(ω)hasnp = n1+n2 sampled points. Equation (4.1) may be generalized for q estimates from

uncorrelated but equivalent samples as follows

Gp(ω) =

∑q
i=1 niGi(ω)∑q

i=1 ni
(4.2)
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It is clear that the pooling operation produces a power spectrum estimate with a reduced random error.

However, it should also be noted that the pooling operation generally will not suppress the system-

atic error (bias) in the power spectra estimates. This fact often leads data analyst to re-process sample

records with equivalent statistical properties in a manner designed to reduce bias errors. For the case of

power spectra estimates, the reprocessing might consist of a re-computation of power spectral density

estimates from the original sample records using a greatly reduced resolution bandwidth to suppress

the bias error at the expense of increase random errors. The random errors in the individual estimates

are then suppresses by the pooling operation.

Another approach which is sometimes employed with analog data analysis equipment is to splice to-

gether the original sample records in order to obtain one long sample record for reprocessing. This pro-

cedure can produce acceptable results, but it must be remembered that certain inherent limitations

imposed by the length of the original records still apply. Specifically, if q sample records each of length

T are spliced together to form a record of length qT , the lowest frequency which can be defined in the
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data is stillω = 2π/T and notω = 2π/(qT ) – see discussion in Section 5.2.1.

4.2.5 Cross Correlation Analysis

As for the case of autocorrelation and power spectral density functions, the cross correlation and cross

spectral density functions are Fourier transform pairs. Hence the measurement of a cross correlogram

will technically not yield any new information over the cross spectrum. However, it may present desired

information in a more convenient format. An example is the measurement of a simple time delay be-

tween two measurement points. Therefore, the cross correlation analysis is included in the procedure

as a separate step indicated by Block E. Note that a cross correlation estimate can be used as a test for

correlation between two individual records, and as an intermediate step in the calculation of a cross

spectral density estimate.
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4.2.6 Cross Correlation Spectral Analysis

The most important join measurement for a collection of correlated sample records is the cross spectral

density analysis indicated by Block F. Cross spectral density functions provide information concerning

the linear relationships which might exist among the collection of sample records.

4.2.7 Coherence Function Analysis

Block G indicates the calculation of coherence functions based upon power and cross spectral density

estimates. Coherence functions of various types (ordinary, multiple, and partial) are valuable in several

ways. First, they can be used to test for correlation among the collection of sample records. Second, they

constitute a vital parameter in assessing the accuracy of frequency response function estimates.
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4.2.8 Frequency Response Function Analysis

The ultimate goal in the analysis of a collection of sample records is often to establish linear relation-

ships among the data represented by the various records. The existence of such linear relationships can

be detected from cross correlation, cross spectral density, or coherence function estimates. However, a

meaningful description of the linear relationship is best provided by computing the frequency response

functions of the relationships, as indicated by Block H.

4.2.9 Other Desired Multiple Analysis

Block I indicates other joint analyses of a collection of sample records needed to satisfy special data

processing goals. Included might be joint probability density and distribution functions.



Temporal Analysis in X–ray Astronomy



M.Orlandini Temporal Data Analysis 191

Now we will apply all the mathematical tools developed in Part I to real data. In particular we will ex-

plore the techniques that are commonly used in timing studies of X–ray sources. The regime we will be

referring to is that of equidistantly binned timing data, the background noise of which is dominated by

counting statistics. If there are gaps in the data, they are far apart and the data are not “sparse” in the

sense that nearly all time bins are empty. This kind of data are eminently suited to analysis with FFT

techniques, and the discussed methods will be based on these techniques.

5.1 Power Spectra in X–ray Astronomy

If we indicate with xk, k = 0, 1, 2, . . . , N − 1, the number of photons detected in bin k by our instru-

ment, then the discrete Fourier transform aj, with j = −N/2, . . . , N/2 − 1, decomposes this signal

intoN sine waves. The following expressions describe the signal transform pair:
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Definition 5.12 (Discrete Fourier transform in X–ray astronomy).

aj =

N−1∑
k−0

xk e
2πijk/N j = −N

2
, . . . ,

N

2
− 1 (5.1a)

xk =
1

N

N/2−1∑
j=−N/2

aj e
−2πijk/N k = 0, 1, . . . , N − 1 (5.1b)

Important Note: please note the difference between this definition and the definition (3.11). The signs

in the exponents in (5.1) are reversed with respect to the ones in (3.11). In X–ray astronomy it is customary

the use of the convention as in Press et al. Accordingly, the prefactor1/N is present in the inverse discrete

Fourier transform and not in the direct one. The consequence is thata0 will not be anymore the average,

but the total number of countsNph =
∑

k xk. As we said before, it is only a question of convention.

If the signal is an equidistant time series of lengthT , so thatxk refers to a time tk = k(T/N), then the

transform is an equidistant “frequency series”, and aj refers to a frequency ωj = 2πνj = 2πj/T . The

time step is δt = T/N ; the frequency step is δν = 1/T .
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Note that a−N/2 =
∑

k xk e
−πik =

∑
k xk (−1)k = aN/2, and that a0 is nothing else that the total

number of detected photons a0 =
∑

k xk ≡ Nph.

We have already seen that the Parseval theorem relates the aj andxk:

N−1∑
k=0

|xk|2 =
1

N

N/2−1∑
j=−N/2

|aj|2 (5.2)

This implies that there is a relation between the summed squared modulus of the Fourier amplitudes

and the total variance of the data:
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Var(xk) =
∑
k

(xk − x̄)2 =
∑
k

x2k − 2x̄
∑
k

xk︸ ︷︷ ︸
Nx̄

+N(x̄)2

=
∑
k

x2k −N(x̄)2 =
∑
k

x2k −
1

N

(∑
k

xk

)2

(5.2)
=

1

N

∑
j

|aj| −
1

N
|a0|2

Therefore we have

Var(xk) =
1

N

N/2−1∑
j=−N/2

j ̸=0

|aj|2 (5.3)

Adopting the normalization used by Leahy et al. (1983), we will define
Definition 5.13 (Power spectrum).

Pj ≡
2

Nph
|aj|2 j = 0, 1, 2, . . . ,

N

2
(5.4)
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whereNph is the total number of photons.

Taking into account that for real data |aj| = |a−j| and that the term at the Nyquist frequency occurs

only once in (5.3), we find the expression for the total variance in terms ofPj:

Var(xk) =
Nph

N

N/2−1∑
j=1

Pj +
1

2
PN/2

 (5.5)

Note the difference in the indexing of aj and Pj. Often the variance is expressed in terms of the frac-

tional root-mean-square (rms) variation in thexk:

rms =

√
1

N
Var(xk)

x̄
=

√√√√√ 1

Nph

N/2−1∑
j=1

Pj +
1

2
PN/2

 (5.6)

Sometimes rms is expressed in terms of percentage, and is then called the “percentage rms variation”.

A sinusoidal signal xk = A sin(2πνjtk) at the Fourier frequency νj will cause a spike at νj in the power

spectrum with
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Pj,sine =
1

2

N 2

Nph
A2 (5.7)

The reason for choosing this apparently rather awkward normalization for the powers lies in the statis-

tical properties of the noise power spectrum, to be described later.

Finally, let us discuss on relation between the sampledxk (with Fourier transform aj) and the continuous

function x(t) (with Fourier transform a(ν)). It is easy to understand that xk is given by a double multi-

plication by two functions:

Window Function

w(t) =


1 0 ≤ t < T

0 else
(5.8)

Sampling Function

i(t) =

+∞∑
k=−∞

δ

(
t− k

T

N

)
(5.9)

Therefore in order to obtain the power spectrum ofxk we must perform a double convolution with both
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the window and the sampling functions. The power spectrum of the shifted window function is (see

Section 2.3.3):

|W (ν)|2 =
∣∣∣∣sin πνTπν

∣∣∣∣2 (5.10)

The Fourier transform on an infinitely extended periodic series of δ-functions is

I(ν) =
N

T

+∞∑
k=−∞

δ

(
ν − k

N

T

)
(5.11)

The functionsw(t) and i(t), together with the corresponding power spectraW (ν) and I(ν), are shown

in Figure 5.1.

The convolution ofa(ν)withW (ν) causes all features in the power spectrum to become wider. We have

already seen that the convolution with a δ-function at ν0 causes a shift of the function by ν0: f (ν) ∗

δ(ν−ν0) = f (ν−ν0)Therefore the convolution ofa(ν)with I(ν), which is a series of δ-functions with

spacingN/T results in a convolved function a(ν) ∗ I(ν) that repeats everyN/T frequency units.
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Figure 5.1: Left: Obtaining the discrete time seriesxk involves the application of the two functionw(t) (window function) and i(t) (sampling function).
The bottom panel show the final results. Right: The discrete Fourier transformaj ofxk is obtained out of the continuous Fourier transform by a double
convolution. These are the power spectra corresponding to the various Fourier transforms. Vertical dashed lines indicate the Nyquist frequency
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For a real signal x(t) we have, as before, a(−ν) = a∗(ν), so that |a(ν)|2 = |a(−ν)|2: the power spec-

trum is symmetric with respect to v = 0. The final result is that the power spectrum of the convolved

function |a(ν) ∗ I(ν)|2 is reflected around the Nyquist frequency νN/2 =
1
2N/T . This causes features

with a frequency exceeding the Nyquist frequency by νx to appear also at a frequency νN/2− νx, a phe-

nomenon we have already seen and known as aliasing.

From their definitions, is is straightforward to show that the discrete Fourier amplitudes aj are the val-

ues at the Fourier frequencies νj = j/T of the windowed and aliased continuous Fourier transform

aWI(ν)

aWI(ν) = a(ν) ∗W (ν) ∗ I(ν) =
∫ +∞

−∞
x(t)w(t) i(t) e2πiνt dt =∫ +∞

−∞
x(t)

N−1∑
k=0

δ

(
t− k

T

N

)
e2πiνt dt =

N−1∑
k=0

x

(
k
T

N

)
e2πiνkT/N

(5.12)

so that aWI(j/T ) = aj. Explicitly performing the convolution of a(ν)with I(ν)we finally have
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aj = aWI(j/T ) = aW(j/T ) ∗ aI(j/T ) =
N

T

+∞∑
k=−∞

aW

(
vk − k

N

T

)
(5.13)

were we used (5.11) and where νj = j/T and aW = a(ν) ∗W (ν).

To summarize: the transition from the continuous Fourier transform to the discrete Fourier transform

involves two operations: windowing, a convolution with the function W (ν) which is essentially a peak

with a width δν = 1/T plus sidelobes, and aliasing, a reflection of features above the Nyquist fre-

quency back into the range (0, νN/2). Windowing is caused by the finite extent, aliasing by the discrete

sampling of the data.

In practice, aliasing is not so much of a problem as one might fear, as the data are not really discretely

sampled at intervals δt = T/N , but rather binned into time bins with a width δt. This is equivalent of

convolving with the “binning window”
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b(t) =


N/T − T

2N
< t <

T

2N

0 else

(5.14)

before the discrete sampling. Applying the inverse convolution theorem, we can see that the effect of

this on the Fourier transform will be that a(ν) is multiplied with the transform of b(t):

B(ν) =
sin πνT/N

πνT/N
(5.15)

This function drops from a value of 1 at ν = 0 to 0 at ν = N/T ; halfway, at the Nyquist frequency it

has the value 2/π. The effect of this multiplication is a considerable repression of the high-frequency

features that could be aliased back into the frequency range (0, νN/2). This is understandable: the effect

of the binning is nothing else than averaging the time series over the bin widthT/N so that variations

with a frequency close toN/T are largely averaged out.
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The problem caused by the windowing can be more serious: the “leakage” cause by the finite width of

the central peak of W (ν) and its sidelobes can strongly distort steep power spectra (they becomes less

steeper) and it can spread out δ-functions over the entire power spectrum.

5.2 Power Spectral Statistics

In general, signal processing is devoted to detection and estimation. Detection is the task of determining

if a specific signal set is present in the observation, while estimation is the task of obtaining the values of

the parameters describing the signal. The process of detecting something in a power spectrum against

a background of noise has several steps. To quantify the power of the source signal, that is to determine

what the power signalPj,signal would have been in the absence of noise, we must consider the interaction

between the noise and the signal.

As our starting point we will make the assumption that our signal will be due to the sum of two indepen-
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dent processes: signal and noise. This corresponds to assume xk = xk,signal + xk,noise. For the linearity

of the Fourier transform if bj and cj are the Fourier transforms ofxk,signal andxk,noise, then aj = bj + cj.

This means that a similar properties does not apply to power spectra:

|aj|2 = |bj + cj|2 = |bj|2 + |cj|2 + cross terms (5.16)

If the noise is random and uncorrelated, and if many powers are averaged, then the cross terms will tend

to average out to zero, and we can write down

Pj = Pj,signal + Pj,noise (5.17)

5.2.1 The Probability Distribution of the Noise Powers

For a wide range of type of noise, the noise powers Pj,noise follow a χ2 distribution with 2 degrees of

freedom (dof). Indeed, if Aj and Bj are the Fourier coefficient of the noise signal, then the Parseval

theorem says that Pj,noise = A2
j + B2

j . But Aj and Bj are linear combinations of the xk, therefore if
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xk are normally distributed, then the Aj and Bj do as well, so that Pj,noise, by definition, is distributed

according to theχ2 distribution with 2 dof.

If thexk follow some other probability distribution, for example the Poisson distribution, then it follows

from the central limit theorem that for “certain” conditions on this other distribution (i.e. for large N ),

theAj andBj will be approximately normally distributed.

In practice, one finds out that noise powers are nearly alwaysχ2 distributed, not only for Poisson noise,

but also for many other type of noise.

The power spectrum normalization defined in (5.4) is chosen in such a way that if the noise in the photon

counting dataxk is pure Poissonian counting noise, then the distribution of thePj, noise is exactly given

by a χ2 distribution with 2 dof. Therefore the probability to exceed a certain threshold power level Pthr

is given by

Prob(Pj,noise > Pthr) = Q(Pthr|2) j = 1, 2, . . . , N/2− 1 (5.18)
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where the integral probability of theχ2 is defined as

Q(χ2|n) = 1

2n/2 Γ
(n
2

) ∫ ∞

χ2
t
n
2−1 e−

t
2 dt (5.19)

wheren is the number of dof.

Because thePj,noise follow this distribution, the power spectrum is very noisy; the standard deviation of

the noise powers is equal to their mean value:

σPj = ⟨Pj⟩ = 2 (5.20)

Two more or less equivalent methods are often used to decrease the large variance of the Pj,noise (see

discussion in Section 4.2.4)

❏ Rebin the power spectrum, averaging b consecutive frequency bins;

❏ Divide the data up into M equal segments, transform these segments each individually and then

average the resulting M power spectra, each normalized according to (5.4). The Nph is now the
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number of photons in each transform.

These two methods, of course, degrade the frequency resolution.

Because the time required to computed the Fourier transform of N data point using an FFT algorithm

is proportional to N logN , there is a computational advantage in the second method; the time saving

factor is about 1 + logM/ logN .

For a variable source, a further advantage of the second method is the possibility to follow the variations

of the power spectra as a function of time and/or intensity (see Figure 5.2).

The first method, on the other hand, has the advantage of producing a power spectrum that extends to

lower frequencies. It is of course possible to combine both methods: each power in the final spectrum

will be the average ofMb original powers.

Because of the additive properties of theχ2 distribution, the sum ofMbpowers is distributed according

to the χ2 distribution with 2Mb dof, so that the probability for a given power Pj,noise in the average
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Figure 5.2: Dynamic power spectrum of the low mass X–ray binary 4U 1728–34. The color map shows increasing power in the order green, red, blue,
and white. The time increases along the horizontal axis with a resolution of 1 sec. The total time shown is 32 sec. During the burst (the yellow line)
the source exhibits pulsation at∼ 363Hz (Strohmayer et al. 1996. ApJ 469, L9)



M.Orlandini Temporal Data Analysis 208

spectrum to exceed aPthr will be

Prob(Pj,noise > Pthr) = Q(MbPthr|2Mb) (5.21)

For largeMb this distribution tends asymptotically to a normal distribution with a mean of 2 and a stan-

dard deviation of 2/
√
Mb:

lim
Mb→∞

Prob(Pj,noise > Pthr) = QGauss

(
Pthr − 2

2/
√
Mb

)
(5.22)

where the integral probability of the normal distribution is

QGauss(x) =
1√
2π

∫ ∞

x

e−t2/2 dt (5.23)

5.2.2 The Detection Level: The Number of Trials

Assuming the χ2 properties of the noise powers (5.21) we can now determine how large a power must

be to constitute a significant excess above the noise.
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Definition 5.14 (Detection level). Let us define (1−ε) the confidence detection at levelPdet as the power level

that has only the small probability ε to be exceeded by a noise power.

So, if there is a powerPj that exceedsPdet, then there is a large probability (1− ε) thatPj is not purely

due to noise, but also contains signal powerPj,signal (this is because of (5.17)).

Because of the way we have built our power spectrum, eachPj will be the sum ofMb power spectra (or

less if only certain frequency range in the spectrum is considered). We call the number of different Pj

values the number of trialsNtrial. The probability to exceedPdet by noise should have the small value ε

for all the powers in the frequency range of interest together, so that the chance per trial should have the

much smaller value of

(1− ε)1/Ntrial ≃ ε

Ntrial
for ε ≪ 1 (5.24)

So the detection levelPdet is
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ε

Ntrial
= Q(MbPdet|2Mb) (5.25)

As an example, if in a power spectrum normalized according (5.4) we find a feature at a level of 44, the

probability of finding aχ2 > 44 for 2 dof by chance isQ(44|2) = 3 · 10−10. Taking into accountNtrial =

65000 we obtain that the probability of finding our feature by chance is 3 · 10−10 × 65000 = 2 · 10−5:

so our feature is quite significant!

In Figure 5.3 Pdet is plotted as a function of Ntrial for various values of Mb and for a confidence level of

90% (ε = 0.1), and 99% (ε = 0.01). Note that although Pdet increases with the number of trials Ntrial,

the increase is relatively slow.
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Figure 5.3: Confidence detection level at the 90% (continuous) and 99% (dashed) as a function of the number of trials. The number of independent
powers, Mb, averaged together due to rebinning of the power spectra by a factor b and averaging M different power spectra increases by a factor 2
in consecutive curves. The trials are assumed to be independent, so no overlaps between the b-bins averages are allowed. As an example, for a power
spectrum produced by averaging together 2 “raw” spectra of 4096 bins each and binning up the resulting spectrum by a factor 4 to produce a 1024-bin
average spectrum, the 90% confidence detection level can be read from the curveMb = 2× 4 = 8 atNtrial = 1024 to be 5.8.
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5.3 The Signal Power

Any quantitative statement one can make about the signal powerPj,signal will be a statement of a prob-

ability based on the probability distribution of the noise powersPj,noise because, from (5.17),

Pj,signal = Pj − Pj,noise (5.26)

Therefore, supposing we have a detection (i.e. for a given j it is true that Pj > Pthr), then what is the

probable value of the signal powerPj,signal at j?

If we define a “limiting noise power level”PNL that has only a small probability ε′ to be exceeded in one

trial

ε′ = Q(MbPNL|2Mb) (5.27)

then, with confidence (1− ε′), we can say that, for a given j,Pj,noise < PNL. Therefore, from (5.26)
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Pj,signal > Pj − PNL (1− ε′) confidence (5.28)

If no significant power level has been attained by any of the Pj, then it is useful to determine an upper

limit to the signal power. The (1 − δ) confidence upper limit PUL to the signal power is defined as the

power level for whichPj,signal < PUL at (1− δ) confidence, irrespective of where this signal power may

have occurred.

To determinePUL we define a power levelPexce that has the large probability (1− δ) to be exceeded by

a given individualPj,noise:

(1− δ) = Q(MbPexce|2Mb) (5.29)

So a fraction of approximately (1 − δ) of all powers considered will exceed Pexce in absence of source

signal. We now find the largest observed powerPmax in the given frequency interval, and write
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PUL = Pmax − Pexce (5.30)

In Figure 5.4 we show the relations between the different quantities defined so far.

5.3.1 Sensitivity to Signal Power

It is sometimes useful to predict the capabilities of a planned experiment in terms of its sensitivity to

signal power. The sensitivity levelPsens can be calculated on the basis of the expected probability distri-

bution of the noise power as

Psens = Pdet − Pexce (5.31)

If there occurs a Pj,signal somewhere in the spectrum that exceeds Psens then it will be detected with

(1− δ) confidence (see Figure 5.4).
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Figure 5.4: Relations between the detection level Pdet, the exceeded level Pexce, the maximum observed power Pmax, the upper limit PUL and the
sensitivity levelPsens.

5.3.2 The rms Variation in the Source Signal

Assuming that the signal power spectrum has been properly separated from the total power spectrum,

we can convert the signal power into the rms variation of the source signalxk using the expression

rms =

√
b
∑

j Pj,signal

Nph
(5.32)

wherePj is anMb times averaged power and whereNph is the number of photons per transform.
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5.4 Detection of Features

If the signal power of a narrow feature in a power spectrum isPsignal, then it will drop toPsignal/Mb after

the frequency resolution has been degraded by a factor Mb by one of the methods described above.

Also the detection level degrades, both because the probability distribution of the noise powers in the

average power spectrum becomes narrower and because the number of trials decreases by a factorMb.

However, in the final analysis the sensitivity level always drops more slowly that 1/Mb, so that the con-

clusion is that for detecting a narrow feature in the power spectrum the highest sensitivity is reached for the

maximum possible frequency resolution, that isMb = 1.

Similar reasoning shows that for a feature of finite width ∆ν the signal power summed over all fre-

quency bins in the feature will drop proportionally to1/Mbwhen the frequency resolution of the power

spectrum is degraded. However, as long as the width of the feature exceeds the frequency resolution

∆ν > Mb/Tobs, where Tobs = MT is the total duration of the observation, the signal power in one
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frequency bin within the feature will remain constant.

5.5 Power Spectral Searches Made Easy

In this section we collect all previous results into a “how-to” recipe for testing the power spectrum for a

weak signal using equal statistically independent trials

➀ Determine the M and b. The optimal choice for Mb is that which approximately matches the ex-

pected width of the power spectral feature one desires to detect, ∆ν ≥ Mb/Tobs (see Figure 5.5

for the effects of choosing the right b). Note that gaps in the data or the desire to observe the time

evolution of the power spectrum may dictateM .

➁ Calculate the M power spectra normalized according to (5.4). Note that xk is the number of pho-

tons in bin k andNph is the number of photons in one power spectrum.

➂ Average theM power spectra.
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Figure 5.5: Effect of choosing the binning size in detecting weak features: the case of the kHz QPO in 4U 1728–34. The same data are shown in both
the two panels, but the right bin size reveals the QPO at∼ 800Hz
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➃ Observe the noise power distribution. Is the noise power spectrum flat? Is its mean level equal to

2? If so, the noise is probably dominated by Poissonian counting statistics. If not, it is necessary to

find out why.

➄ Determine the detection level.

➅ Check the average spectrum for powers exceeding the detection level.

➆ Quantify the signal power in terms of a detection or an upper limit.

➇ Convert the signal power into the relative rms variation of the source signal, defined as

rms =
√

1

N

∑
k

(RATEk − ⟨RATE⟩)2 (5.33)

and compute the excess variance

Excess Variance =

√
rms2 − 1

N

∑
k

ERROR2
k (5.34)
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➈ To say more about the signal, we need to model its power spectrum.

5.6 Type of Variability

In the previous Section we were left with the last point in our “how-to” with the problem of modeling a

power spectrum. In this section we will deal with the problem of linking the shape of a power spectrum

with the statistical processes that originated the timing variability. In Figure 5.6 we show a schematic

power spectrum of an X–ray source displaying characteristic features: a continuum described in terms

of 1/f noise, a Quasi-Periodic Oscillation (QPO) and a sharp peak due to a coherent signal (in this case

the rotation period of the object). We have already discussed on the Poissonian level; now we will now

analyze in details the other components.

5.6.1 1/f Noise

Definition 5.15 (1/f noise). 1/f refers to the phenomenon of the spectral density,S(f ), having the form
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Figure 5.6: Noise classification in astronomical power spectra

S(f ) = K f−α (5.35)

where f is the frequency.

1/f noise is an intermediate between the well understood white noise with no correlation in time and

random walk (Brownian motion) noise with no correlation between increments (see Figure 5.7). Brow-

nian motion is the integral of white noise, and integration of a signal increases the exponent α by 2

whereas the inverse operation of differentiation decreases it by 2. Therefore, 1/f noise can not be ob-
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tained by the simple procedure of integration or of differentiation of such convenient signals. Moreover,

there are no simple, even linear stochastic differential equations generating signals with 1/f noise.

The widespread occurrence of signals exhibiting such behavior suggests that a generic mathematical

explanation might exist. Except for some formal mathematical descriptions like fractional Brownian

motion (half-integral of a white noise signal), however, no generally recognized physical explanation of

1/f noise has been proposed. Consequently, the ubiquity of 1/f noise is one of the oldest puzzles of

contemporary physics and science in general.

The case of α = 1, or pink noise, is both the canonical case, and the one of most interest, but the more

general form, where 0 < α ≤ 3, is sometimes referred to simply as 1/f . 1/fα noise is of interest

because it occurs in many different systems, both in the natural world and in man-made processes (see

Figure 5.8) from physics, biology, neuroscience, and psychology.

Although 1/f noise appears in many natural systems and has been intensively studied for decades with

many attempts to describe the phenomenon mathematically, researchers have not yet been able to
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Figure 5.7: Examples of 1/f noise: on the left the time series and on the right the corresponding power spectrum
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Figure 5.8: Examples of 1/f noise observed in both in the natural world and in man-made processes from physics, biology, neuroscience, and psy-
chology
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agree on a unified explanation. Thus, there exist at present several formulations of systems that give

rise toS(f ) = K/fα.

5.6.2 Shot Noise Process

First, let tk be a Poisson point process. A shot noise process is obtained by attaching to each tk a relax-

ation function (unilateral exponential function)

N(t) = N0e
−λt, t ≥ 0

and summing on k (see Figure 5.9). The Fourier transform of the shot noise process is (see Page 57)

S(f ) = lim
T→∞

1

T
⟨| F (f ) |2⟩ = N 2

0n

λ2 + f 2

wheren is the average rate at which tk occur, andT is the interval over which the process is observed. As

we have already seen, the power spectrum of an unilateral exponential function is a Lorentzian function.
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Figure 5.9: The shot noise process

For an aggregation of shot noise processes withλuniformly distributed on [λ1, λ2], the power spectrum

is
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S(f ) =



N 2
0n if 0 ≪ f ≪ λ1 ≪ λ2

N 2
0nπ

2f (λ2 − λ1)
· 1
f

ifλ1 ≪ f ≪ λ2

N 2
0n · 1

f 2
if 0 ≪ λ1 ≪ λ2 ≪ f

If the impulse response function is a power law, N0x
−β, the process is called fractal shot noise, and the

power spectrum is of the form

S(f ) ≈ k

f 2(1−β)

Whenβ = 1/2, we obtainS(f ) ≈ 1/f .
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5.6.3 A Clustering Poisson Point Process

Another example based on a Poisson point process is the clustering Poisson. To each Poisson point, tk, is

attached an additional set of points, called a cluster, that occur after it; clusters can overlap each other.

The number of points in each cluster,m, is a random variable whose distribution,pm, is concentrated on

a finite set of integers. The points in the cluster are spaced at independent and identically distributed

intervals with an arbitrary inter-point distribution. The power spectral density turns out to be a sum of

Lorentzian-like functions. When pm is proportional to 1/m2 we obtainS(f ) ∝ 1/f .

A slightly different formulation is a gating process in which clusters do not overlap. Here, a Poisson

point process is multiplied by a gating process that is 1 on a random interval and then 0 on a random

interval and so on. To obtain a 1/f noise let the intervals of 1 be exponentially distributed and the in-

tervals of 0 be geometrically distributed, or vice versa. Then roughly the same computations as just

summarized yield the 1/f approximation. Notice that for the shot noise processes, the cluster and gat-
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ing processes, and the AR(1) aggregation (see below), the power spectral density computation yields a

sum of Lorentzian or Lorentzian-like functions.

5.6.4 Recurrence Models

In these models the signal consists of pulses or events

x(t) = a
∑
k

δ(t− tk).

Here δ(t) is the Dirac delta function,{tk} is a set of the occurrence times at which the particles or pulses

cross the section of observation, anda is the contribution to the signal of one pulse or particle. The inter-

pulse, inter-event, inter-arrival, recurrence or waiting times τk = tk+1 − tk of the signal are described

by the general Langevin equation with multiplicative noise, which is also stochastically diffuse in some

interval, resulting in the power-law distribution.

Another recurrence time process generating a power-law probability distribution is a multiplicative
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stochastic process

τk+1 = τk + γ τ 2µ−1
k + σ τµk εk,

where the ϵk are independent and identically distributed Gaussian noise,γ is very small andσ, the stan-

dard deviation of the noise, is also small, whileµ represents the degree of multiplicativity of the process.

A particular form of the model is the autoregressive5 AR(1) process

(τk − τ̄ ) = (1− γ)(τk − τ̄ ) + σϵk,

where τ̄ is the mean of the inter-event intervals.

Notice that the power spectrum of this AR(1) time series process, composed of successive values of (τk−

τ̄ ), is proportional to 1/f 2 on a long interval when γ is small, and thus this power spectrum is not the
5The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is defined as

Xt = c+

p∑
i=1

φiXt−i + εt

whereφ1, . . . ,φp are the parameters of the model, c is a constant and εt is white noise. The constant term is omitted by many authors for simplicity. An autoregressive model can
thus be viewed as the output of an all-pole infinite impulse response filter whose input is white noise.
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same as that of the point process (whose points tk generate the time series) on that interval.

In such point process models the intrinsic origin of 1/f noise is in Brownian fluctuations of the mean

inter-event time of the (Poisson-like) signal pulses, similar to Brownian fluctuations of signal amplitude

that result in 1/f 2 noise. The random walk of the inter-event time on the time axis is a property of ran-

domly perturbed or complex systems that display self-organization.

✳ ✳ ✳

Without enter into the details, other ways of obtaining 1/f noise are through models of a particular

class of stochastic differential equation and through a reversible Markov chain model.

5.7 Fitting Power Spectra Continuum with Lorentzians

Instead of describing the observed power spectrum continua in terms of 1/f noise, recently it has be-

come quite popular a different approach. The power spectrum from X–ray sources like low-mass X–ray
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binaries (LMXB) can be described in terms of a flat-top continuum at low frequencies that becomes

steeper at high frequencies, with bumps and wiggles. This continuum can be fit without the need of

power-law components, but as a sum of Lorentzians, some of which are broad (Belloni et al. 2002).

The power spectra are described as the sum of Lorentzian componentsL(ν) of the form

L(ν) =
r2∆

π

1

∆2 + (ν − ν0)2
(5.36)

where r is the integrated fractional rms (over−∞ to+∞) of each Lorentzian and∆ is its Half-Width at

Half Maximum (HWHM=FWHM/2). The power spectra are then displayed in aν Pν plot. The frequency

νmax at which the ν Pν attains its maximum is

νmax =
√
ν20 +∆2 = ν0

√
1 +

1

4Q2
(5.37)

where Q ≡ ν0/2∆ is called quality factor. Note that νmax ≥ ν0: the difference is small for narrow

features but becomes large in the case of broad ones. In Figure 5.10 we show an example of such a fit for
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two LMXB: XTE 1118+480 and 1E 1724–3045.

With this phenomenological modelization it is possible to use a limited number of fit components and

compare the power spectra of different sources. But what is the physical mechanism responsible for the

observed shape of the power spectra is still an open issue.

5.8 Quasi-Periodic Oscillations (QPO)

Quasi-Periodic Oscillations (QPO) are broad features observed in the power spectra of many X–ray sources.

They are described in terms both of a Gaussian or a Lorentzian shape. As discussed above, the Lorentzian

shape has a physical basis as due to a shot noise process. The QPO can be therefore characterized by its

centroid frequency LC, its width LW, and its normalization LN. Instead of LN t is customary to give the

QPO percentage rms, defined as

percentage rms = 100

√
I

⟨RATE⟩
(5.38)
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Figure 5.10: Power spectra in ν Pν form for two LMXB XTE 1118+480 (left) and 1E 1724–3045 (right). The presence of more power at high frequency
for 1E 1724–3045 is interpreted as due to the presence of a neutron star in the system (while XTE 1118+480 should hosts a black hole)
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where I is the Lorentzian integral, defined as

I =
π

2
LC × LW

and ⟨RATE⟩ is the source average count rate. Sometimes, for a QPO is given the quality factorQ, defined

as

Q-factor =
LC

LW
(5.39)

In Figure 5.11 we show a Lorentzian fit to a QPO observed in the low-mass X-ray binary and atoll source

4U 1735-44.

5.9 Analysis of Unevenly Sampled Data

Thus far, we have been dealing exclusively with evenly sampled data. There are situations, however,

where evenly sampled data cannot be obtained (for example, for astronomical data, where the observer
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Figure 5.11: Typical Leahy normalized power spectra in the energy range of 2–18 keV. (a) The kHz QPO at 1150 Hz; (b) the complex high-frequency
noise and the 67 Hz QPO. From Wijnands et al. 1998. ApJ 495, L39

cannot completely control the time of observations).

There are some obvious ways to get from unevenly spaced tk to evenly spaced ones. Interpolation is one

way: lay down a grid of evenly spaced times on our data and interpolate values onto that grid; then use

FFT methods. If a lot of consecutive points are missing, we might set them to zero, or might be fix them

at the value of the last measured point. Unfortunately, these techniques perform poorly. Long gaps in

the data, for example, often produce a spurious bulge of power at low frequencies.

A completely different method of spectral analysis of unevenly sampled data was developed by Lomb
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and additionally elaborated by Scargle. The Lomb-Scargle method evaluates data, and sines and cosines,

only at times tk that are actually measured.

Suppose that there are N data points hk ≡ h(tk) with k = 0, 1, . . . , N − 1. Then first find the mean

and variance of the data in the usual way

h̄ ≡ 1

N

N−1∑
k=1

hk σ ≡ 1

N − 1

N−1∑
k=1

(hk − h̄)2 (5.40)

Definition 5.16 (Lomb-Scargle normalized periodogram).

PN(ω) ≡
1

2σ2

{[∑
k(hk − h̄) cosω(tk − τ )

]2∑
k cos

2 ω(tk − τ )
+

[∑
k(hk − h̄) sinω(tk − τ )

]2∑
k sin

2 ω(tk − τ )

}
(5.41)

Here τ is defined by the relation

tan(2ωτ ) =

∑
k sin 2ωtk∑
k cos 2ωtk

(5.42)

The constant τ is a kind of offset that makesPN(ω) completely independent of shifting all the tk by any
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constant. This particular choice of τ has another, deeper effect. It makes (5.41) identical to the equation

that one would obtain if one estimated the harmonic content of a data set, at a given frequency ω, by

linear least-squares fitting to the model

h(t) = A cosωt +B sinωt

This fact gives some insight into why the method can give results superior to FFT methods: it weight the

data on a “per-time interval” basis, when uneven sampling can render the latter seriously in error.

As we have seen in Section 5.3, the assessment of the signal significance in the case of FFT methods is not

easy. On the other hand, the significance of a peak in thePN(ω) spectrum can be assessed rigorously.

The word “normalized” refers to theσ2 factor in the denominator of (5.41). Scargle shows that with this

normalization, at any particular ω and in the case of the null hypothesis that our data are independent

Gaussian random values, thenPN(ω)has an exponential probability distribution with unit mean. In other

words, the probability thatPN(ω)will be between some positive z and z + dz is exp(−z) dz. It readily
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follows that, if we scan some M independent frequencies, the probability that none give values larger

than z is (1− e−z)M . So

Prob(> z) = 1− (1− e−z)M (5.43)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak inPN(ω) that

we do see. A small value for the false-alarm probability indicates a highly significant periodic signal.

To evaluate the significance, we need to know M . A typical procedure will be to plot PN(ω) as a func-

tion of many closely spaced frequencies in some large frequency range. How many of them are inde-

pendent?

Before answering, let us first see how accurately we need to know M . The interesting region is where

the significance is a small (significant) number,≪ 1. There (5.43) can be expanded in series to give

Prob(> z) ≈ M e−z (5.44)
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We see that the significance scale linearly with M . Practical significance levels are numbers like 0.05,

0.01, 0.001, etc, therefore our estimate ofM need not to be accurate.

The results of Monte Carlo experiments aimed to determine M show that M depends on the number

of frequencies sampled, the number of data pointsN , and their detailed spacing. It turns out thatM is

very nearly equal to N when the data points are approximately equally spaced and when the sampled

frequencies “fill” (oversample) the frequency range [0,ΩNyq]. Figure 5.12 shows the results of applying

a Lomb-Scargle periodogram to a set of N = 100 data points, Poissonian distributed in time. There is

certainly no sinusoidal signal evident to the eye. The lower plot showsPN(ω)against the frequencyν =

ω/2π. The Nyquist frequency that would obtain if the points were evenly spaced is at νNyq = 0.5 Hz.

Since we have searched up to about twice that frequency, and oversampled the ν ’s to the point where

successive values of PN(ω) vary smoothly, we take M = 2N . One see a highly significant peak at a

frequency of 0.81 Hz. This is indeed the frequency of the sine wave used to create the data (we have to

take our word for this!).
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Figure 5.12: Example of the Lomb-Scargle algorithm in action. The 100 data points (upper panel) are at random times between 0 and 100. Their
sinusoidal component is readily uncovered (lower panel) by the algorithm, at a significance level p < 0.001. If the 100 data points had been evenly
spaced at unit interval, the Nyquist frequency would have been 0.5 Hz. Note that, for these unevenly spaced points, there is no visible aliasing into
the Nyquist range
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Note that two other peaks approach but not exceed the 50% significance level: that is about what one

might expect by chance. It is also worth commenting on the fact that the significant peak was found

above the Nyquist frequency and without any significant aliasing down into the Nyquist interval. That

would not be possible for evenly spaced data.

5.10 Analysis of a Coherent Signal

In X–ray astronomy (and in astronomy in general) the detection of coherent signal is quite common: for

example, we detect periodic signal as due to star pulsations, pulse periods in pulsars, orbital modula-

tions and eclipses, precession.

Two methods of analysis are used to examine data for evidence for periodic signals: FFT and epoch fold-

ing. In general, both techniques have certain advantages and disadvantages in their application. There

latter are worsened both by the presence of gaps in the data and the large number of statistically inde-
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pendent frequencies which could, in principle, be examined.

Epoch folding is more sensitive to non sinusoidal pulse shapes encountered in X–ray astronomy. Fur-

thermore, the technique is relatively insensitive to randomly occurring gaps in the data so long as the

net pulse phase coverage is reasonably uniform. Epoch folding is, however, extremely computer time-

consuming (even if now the increased CPU power of the current computers makes this issue less impor-

tant).

The FFT, on the other hand, is extremely efficient. However, the FFT is difficult to interpret in the pres-

ence of gaps in the data (and in this case is better to use the Lomb-Scargle periodogram technique, as

discussed in Section 5.9).

The epoch folding consists in folding the data modulo a trial period and then grouping the observations

according to phase, in order to obtain a high signal-to-noise profile. Theχ2 statistics is then used to test

the high signal-to-noise profile for uniformity. This statistic is χ2
n−1 distributed, wheren is the number

of phase bins. By varying the trial period we can build a χ2 vs period diagram and find out the one that
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gives the maximumχ2 (that is, the rejection of the uniformity hypothesis). Because theχ2 distribution

resembles a triangular distribution (see Figure 5.13), it can be often well be fit by a Gaussian function, the

mean of which may be considered the “best” coherent period P present in the data. The FWHM of the

χ2 distribution should be of the order of∼ P 2/T , whereT is the total elapsed time of the observation.

Of course this method works if there are not intrinsic period variations, like the one due to orbital mo-

tions. In this case it is necessary to perform a time transformation that makes the signal coherent. This

transformation is called a timing model. The timing model predicts a model profile, or template, that is

correlated to the average profile so that a phase offset can be determined. When multiplied by the in-

stantaneous pulse period, that phase yields a time offset that can be added to a high-precision reference

point on the profile (for example, the edge of the profile) to create the time-of-arrival or TOA, as shown

in Figure 5.14. The general procedure to derive information on the source from the measured TOAs is

depicted in Figure 5.15.

The TOA of the pulse numbern is, by definition,
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Figure 5.13: Pulse period of the X–ray binary pulsar GX 301–2 obtained by means of the epoch folding technique
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tn = t0 + nP (5.45)

where t0 is a reference time (usually the start of the observation). When including intrinsic period vari-

ations we can perform a Taylor expansion inP and write down

tn = t0 + nP +
1

2
n2 PṖ +

1

6
n3 P 2P̈ + · · · (5.46)

Equation (5.46) can be inverted and expressed in terms of the pulse phaseφ at time (t− t0)

φ = φ0 + f0(t− t0) +
1

2
ḟ (t− t0)

2 +
1

6
f̈ (t− t0)

3 + · · · (5.47)

where f0 = 1/P and f is the frequency. The precision with which a TOA can be determined is approx-

imately equal to the duration of a sharp pulse feature (e.g., the leading edge) divided by the signal-

to-noise ratio of the average profile. It is usually expressed in terms of the width of the pulse features

Wf in units of the period P , the pulse period P , and the signal-to-noise ratio SNR such that σTOA ∝
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Figure 5.14: Measuring the phase shift with respect to a template
profile

Clock
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Figure 5.15: General procedure to derive information on the source
from the measured TOAs
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Figure 5.16: The time of arrivals of pulses from celestial objects are referenced to the nearly inertial reference frame of the Solar System barycenter

WfP/SNR. Therefore strong, fast pulsars with narrow pulse profiles provide the best arrival times.

Before proceeding, it is better to eliminate the very first cause of period variations: the motion of the

Earth and/or of the spacecraft. This is done by referencing the TOAs to a nearly inertial reference frame:

the Solar System barycenter (see Figure 5.16).

The variation of the TOAs due to the orbital motion of the pulsar in the binary system can be written as

an addition term in Equation (5.46) of the form

· · · + ax sin i

c
F (e, ω, τ, θ) (5.48)
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where ax sin i is the projected semi-major axis of the pulsating star orbiting with an inclination angle

i in the binary system. The function F (e, ω, τ, θ) represents the eccentric orbit of the pulsar around

the center of mass of the binary system, where e is the eccentricity,ω the longitude of the periastron, τ

the time of periastron passage, and θ ≡ 2π(t − τ )/Porb is the mean anomaly (see Figure 5.17 for the

definition of the orbital parameters). In particular, we have that

F (e, ω, τ, θ) = (1− e2)
sin(υ + ω)

1 + e cos υ
(5.49)

where the true anomaly υ can be calculated from the observed mean anomaly θ using the relations

tan
υ

2
=

√
1 + e

1− e
tan

E

2
; E − e sinE = θ (5.50)

The last relation is the so-called Kepler Equation. By fitting the series of TOAs with Equation (5.46) plus

(5.48), we are able to obtain the pulse periodP at time t0, its time derivatives Ṗ and P̈ , together with the

orbital parameters of the pulsar a sin i, e,ω, τ andPorb. An example of the Doppler curve, representing
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Figure 5.17: In this diagram, the orbital plane (yellow) intersects a reference plane (gray). The intersection is called the line of nodes, as it connects
the center of mass with the ascending and descending nodes
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the pulse delay times due to the light transit across the binary orbit, is shown in Figure 5.18 for the X–ray

binary pulsar Hercules X–1.

5.10.1 Determination of Neutron Star Masses

X–ray binary pulsars are an important laboratory for measurements of astrophysical quantities. One of

the most important is the determination of the mass of the neutron star orbiting its companion. From

the orbital parameters determined in the previous section, the mass function can be expressed as

f (M) =
4π2(ax sin i)

3

GP 2
orb

= 1.1× 10−3

(
ax sin i

1 lt-s

)3(
Porb

1 d

)−2

M⊙ (5.51)

where G is the gravitational constant. The ratio of the neutron star mass Mx to that of the companion

starMc is obtained as
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Figure 5.18: Delays of the TOA in Her X–1 due to its orbital motion and theoretical sine curve for the 35 day orbital period. The residuals refer to
different orbital parameters solutions. From Staubert et al. 2009
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q ≡ Mx

Mc
=

Kc Porb
√
1− e2

2πax sin i

= 4.6× 10−2
√
1− e2

(
Kc

1 Km s−1

)(
Porb

1 d

)(
ax sin i

1 lt-s

)−1

whereKc is the semi-amplitude of the Doppler velocity curve of the companion star as measured from

optical observations.

Because in the Doppler fitting we are able to determine only the product ax sin i, we need an indepen-

dent estimate of the inclination angle i. This can be obtained if the source shows X–ray eclipses. Indeed,

the average radius of the companion starRc is related to the eclipse half-angleΘc as

Rc = a
(
cos2 i + sin2 i sin2Θc

)1/2 (5.52)

wherea = ax+ac is the separation of the centers of mass of the two stars in the binary system. Putting

the things together, we can estimate the inclination angle in terms of the critical Roche-lobe radiusRL
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as

sin i =

[
1− β2

(
RL

a

)2
]1/2

cosΘc
(5.53)

where β ≡ Rc/RL. With all this information it is possible to resolve the binary system and derive an

estimate of the mass of the neutron star. All measured masses are consistent at 4σ with a maximum

mass of 1.5–1.65M⊙.
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Where to find these class notes?

The class notes of this Course, both in slide format and booklet format, can be downloaded from the
following web page

☞ http://www.iasfbo.inaf.it/~mauro/Didattica/Timing

Thank you for your attention. ..

. . . and PATIENCE!

We are all in the gutter,
but some of us are looking at the stars.

(Oscar Wilde)

http://www.iasfbo.inaf.it/~mauro/Didattica/Timing
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