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Theory
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Chapter1
Classification of Physical Data

Any observed data representing a physical phenomenon can be broadly classified as being either

deterministic or nondeterministic. Deterministic data are those that can be described by an explicit
mathematical relationship. There aremany physical phenomena in practicewhich produce data

that can be represented with reasonable accuracy by explicit mathematical relationships. For

example, themotion of a satellite in orbit about the Earth, the potential across a condenser as it

discharges through the resistor, the vibration response of an unbalanced rotating machine, or

the temperature of water as heat is applied, are all basically deterministic. However, there are

many other physical phenomena which produce data that are not deterministic. For example,

the height of waves in a confused sea, the acoustic pressure generated by air rushing through

a pipe, or the electrical output of a noise generator represent data which cannot be described

by explicit mathematical relationships. There is no way to predict an exact value at a future in-

stant of time. These data are random in character andmust be described in terms of probability

statements and statistical averages rather than explicit equations.

Various special classifications of deterministic and random data will now be discussed.

1.1 Deterministic Data

Data representing deterministic phenomena can be categorized as being either periodic or non
periodic. Periodic data can be further categorized as being either sinusoidal or complex periodic.
Non periodic data can be further categorized as being either almost-periodic or transient. These

various classificationsofdeterministic data are schematically illustrated inFigure 1.1. Of course,

any combination of these forms may also occur. For purposes of review, each of these types of

deterministic data, along with physical examples, will be briefly discussed.

1.1.1 Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data which can be definedmathematically by a time-

varying function of the form

3
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Figure 1.1: Classification of deterministic data

x(t) = X sin(ω0t+ φ) (1.1)

whereX is the amplitude, ω0 is the angular frequency, in units of radians per unit time
1
, φ is

the initial phase angle (in radians) with respect to the time origin, and x(t) is the instantaneous
value at time t. The sinusoidal time history described by (1.1) is usually referred as a sine wave.

When analyzing sinusoidal data in practice, the phase angle φ is often ignored.

The time interval required for one full fluctuation or cycle of sinusoidal data is called the period

T . The number of cycles per unit time is called the frequency ν.

There are many example of physical phenomena which produce approximately sinusoidal data

in practice. The voltage output of an electrical alternator is one example; the vibratorymotion of

an unbalanced rotating weight is another. Sinusoidal data represent one of the simplest forms

of time-varying data from the analysis viewpoint.

1.1.2 Complex Periodic Data

Complex periodic data are those type of periodic data which can be defined mathematically by

a time-varying function whose waveform exactly repeats itself at regular intervals such that

x(t) = x(t± nT ) n = 1, 2, 3, . . . (1.2)

As for sinusoidal data, the time interval required for one full fluctuation is called the period T .
The angular frequency is called the fundamental frequency ω. With few exceptions in practice,

complex periodic datamay be expanded into a Fourier series according to the following formula

(we will return later in greater detail on that)

1
Not to be confused with the frequency ν, measured in Hz. The two are related by ω = 2πν.

4 M.Orlandini
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x(t) =
∞∑
k=0

(Ak cosωkt+Bk sinωkt) (1.3)

with ωk = 2πk/T andB0 = 0. An alternative way to express the Fourier series is

x(t) = X0 +
∞∑
k=1

Xk cos(ωkt+ φk) (1.4)

In other words, (1.4) says that complex periodic data consists of a static component and an infi-

nite number of sinusoidal components called harmonics, which have amplitudesXk and phases

φk. The frequencies of the harmonic components are all integral multiples of ω1.

Physical phenomena which produce complex periodic data are far more common than those

which produce simple sinusoidal data. In fact, the classification of data as being sinusoidal is

often only an approximation for data which are actually complex. For example, the voltage out-

put froman electrical alternatormay actually display, under careful inspection, some small con-

tributions at higher harmonic frequencies. In other cases, intense harmonic components may

be present in periodic physical data.

1.1.3 Almost-Periodic Data

Wehave seen that periodic data can be generally reduced to a series of sinewaveswith commen-

surately related frequencies. Conversely, the data formed by summing two ormore commensu-

rately related sine waves will be periodic. However, the data formed by summing two or more

sine waves with arbitrary frequencies will not be periodic.

More specifically, the sum of two or more sine waves will be periodic only when the ratios of all

possible pairs of frequencies form rational numbers. This indicates that a fundamental period

exists which will satisfy the requirements of (1.2). Hence,

x(t) = X1 sin(2t+ φ1) +X2 sin(3t+ φ2) +X3 sin(7t+ φ3)

is periodic since 2/3, 2/7 and 3/7 are rational numbers (the fundamental period is T = 1). On
the other hand,

x(t) = X1 sin(2t+ φ1) +X2 sin(3t+ φ2) +X3 sin(
√
50t+ φ3)

is not periodic since 2/
√
50 and 3/

√
50 are not rational numbers (in this case the fundamental

period is infinitely long). The resulting time history in this case will have an “almost periodic”
character, but the requirement of (1.2) will not be satisfied for any finite value of T .
Based on these discussions, almost periodic data are those types of non periodic data which can

be definedmathematically by a time-varying function of the form

x(t) =
∞∑
k=1

Xk sin(ωkt+ φk) (1.5)

M.Orlandini 5
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with ωj/ωk ̸= rational numbers in all cases. Physical phenomena producing almost periodic

data frequently occur in practicewhen the effects of two ormore unrelated periodic phenomena

are mixed. A good example is the vibration response in a multiple engine propeller airplane

when the engines are out of synchronization.

1.1.4 Transient Non periodic Data
Transient data are defined as all non periodic data other the almost-periodic discussed above.

In other words, transient data include all data not previously discusses which can be described

by some suitable time-varying function.

Physical phenomena which produce transient data are numerous and diverse. For example, the

behavior of the temperature of water in a kettle (relative to room temperature) after the flame is

turned off.

1.2 RandomData
Data representing a random physical phenomenon cannot be described by an explicit math-

ematical relationship because each observation of the phenomenon will be unique. In other

words, any given observation will represent only one of the many possible results which might

haveoccurred. For example, assumetheoutput voltage fromathermalnoisegenerator is recordered

as a function of time. A specific voltage time history record will be obtained. However, if a sec-

ond thermal noise generator of identical construction and assembly is operated simultaneously,

a different voltage timehistory recordwould result. In fact, every thermal noise generatorwhich

might be constructed would produce a different voltage time history record. Hence the voltage

time history for any one generator is merely one example of an infinitely large number of time

histories which might be occurred.

A single time history representing a random phenomenon is called a sample function (or a sample
recordwhen observed over a finite time interval). The collection of all possible sample functions

which the random phenomenon might have produced is called a random process or a stochastic
process. Hence a sample record of data for a random physical phenomenonmay be though of as

one physical realization of a random process.

Random processes might be categorized as being either stationary or non stationary. Stationary
randomprocessesmay be further categorized as being either ergodic or non ergodic. Non station-
ary random processes may be further categorized in terms of specific types of non stationary

properties. These various classifications of random processes are schematically illustrated in

Figure 1.2. The meaning and physical significance of these various types of random processes

will now be discussed in broad terms.

1.2.1 Stationary RandomProcesses
When a physical phenomenon is considered in terms of a random process, the properties of the

phenomenon canhypothetically be described at any instant of timeby computing average values

6 M.Orlandini
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Figure 1.2: Classifications of random data

over the collection of sample functions which describe the random process. For example, con-

sider the collection of sample functions (also called the ensemble) which form the randomprocess

illustrated in Figure 1.3. Themeanvalue (firstmoment) of the randomprocess at some time t1 can
be computed by taking the instantaneous value of each sample function of the ensemble at time

t1, summing the values, and dividing by the number of sample functions. In a similar manner,
a correlation (joint moment) between the values of the random process at two different times

(called autocorrelation function) can be computed by taking the ensemble average of the product of
instantaneous values at two times, t1 and t1 + τ . That is, for the random process {x(t)}, where
the symbol { } is used to denote an ensemble of sample functions, themean valueµx(t1) and the
autocorrelation functionRx(t1, t1 + τ) are given by

µx(t1) = lim
N→∞

1

N

N∑
k=1

xk(t1) (1.6a)

Rx(t1, t1 + τ) = lim
N→∞

1

N

N∑
k=1

xk(t1)xk(t1 + τ) (1.6b)

where the final summation assumes each sample function is equally likely.

For the general casewhereµx(t1) andRx(t1, t1+τ)defined in (1.6) vary as time t1 varies, the ran-
domprocess{x(t)} is said tobenonstationary. For the special casewhereµx(t1)andRx(t1, t1+τ)
do not vary as time t1 varies, the random process {x(t)} is said to be weakly stationary or sta-
tionary in the wide sense. For the weakly stationary processes, the mean value is a constant

and the autocorrelation function is dependent only upon the time of displacement τ . That is,

µx(t1) = µx andRx(t1, t1 + τ) = Rx(τ).
An infinite collection of higher ordermoments and jointmoments of the randomprocess {x(t)}
could also be computed to establish a complete family of probability distribution functions de-

scribing the process. For the special case where all possible moments and joint moments are

M.Orlandini 7
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Figure 1.3: Ensemble of sample functions forming a random process
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time invariant, the random process {x(t)} is said to be strongly stationary or stationary in the
strict sense. For many practical applications, verification of weak stationarity will justify an as-

sumption of strong stationarity.

1.2.2 Ergodic RandomProcesses
The previous section discusses how the properties of a random process can be determined by

computing ensamble averages at specific instants of time. In most cases, however, it is also

possible to describe the properties of a stationary random process by computing time averages

over specific sample functions in the ensemble. For example, consider the k-th sample function
of the random process illustrated in Figure 1.3. The mean value µx(k) and the autocorrelation
functionRx(τ, k) of the k-th sample function are given by

µx(k) = lim
N→∞

1

N

∫ T

0

xk(t)dt (1.7a)

Rx(τ, k) = lim
N→∞

1

N

∫ T

0

xk(t)xk(t+ τ)dt (1.7b)

If the random process {x(t)} is stationary, and µx(k) andRx(τ, k) defined in (1.7) do not differ
when computed over different sample functions, the random process is said to be ergodic. For
ergodic random processes, the time averaged mean value and autocorrelation function (as well

as all other time-averaged properties) are equal to the corresponding ensemble averaged value.

That is, µx(k) = µx and Rx(τ, k) = Rx(τ). Note that only stationary random process can be

ergodic.

Ergodic randomprocesses are clearly an important class of randomprocesses since all processes

of ergodic randomprocesses can be determined by performing time averages over a single sam-

ple function. Fortunately, inpractice, randomdata representing stationaryphysical phenomena

are generally ergodic. It is for this reason that the properties of stationary random phenomena

can be measured properly, in most cases, from a single observed time history record.

1.2.3 Non stationary RandomProcesses
Non stationary random processes include all random processes which do not meet the require-

ments for stationarity defined in the previous section. Unless further restrictions are imposed,

the properties of non stationary random processes are generally time-varying functions which

can be determined only by performing instantaneous averages over the ensemble of sample

functions forming the process. In practice, it is often not feasible to obtain a sufficient num-

ber of sample records to permit the accurate measurement of properties by ensemble averag-

ing. This fact has tended to impede the development of practical techniques for measuring and

analyzing non stationary random data.

In many cases, the non stationary random data produced by actual physical phenomena can be

classified into special categories of non stationarity which simplify the measurement and anal-

ysis problem. For example, some type of random data might be described by a non stationary

M.Orlandini 9
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random process {y(t)} where each sample function is given by y(t) = A(t)x(t). Here x(t) is
a sample function from a stationary random process {x(t)} and A(t) is a deterministic mul-
tiplication factor. In other words, the data might be represented by a non stationary random

process consisting of a sample functions with a common deterministic time trend. If non sta-

tionary random data fit a specific model of this type, ensemble averaging is not always needed

to describe the data. The various desired properties can sometimes be estimated from a single

record, as is true for ergodic stationary data.

10 M.Orlandini



Chapter 2
Harmonic Analysis

Few preliminary remarks are in order: First, we will use the angular frequency ω when we refer
to the frequency domain. The unit of the angular frequency is radians/second (or simpler s

−1
).

It is easily converted to the frequency ν (unit in Hz) using the following equation:

ω = 2πν

Second: just let us remember the definition of even and odd functions.

Definition 2.1 (Even and odd functions). A function is said to be even if

f(−t) = f(t) even function

while a function is said to be odd if

f(−t) = −f(t) odd function

Any function can be described in terms of amixture of even and odd functions, bymeans of the

following decomposition (see Figure 2.1):

feven =
f(t) + f(−t)

2

fodd =
f(t)− f(−t)

2

2.1 Fourier Series
This Sectionwill deal with themapping of periodic functions to a series based on the trigonomet-
ric functions sine (and odd function) and cosine (even function).

11
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2.1.1 Definition
Any periodic function f(t) can be expanded into a series of trigonometric function, the so called
Fourier series, as follows

Definition 2.2 (Fourier series).

f(t) =
∞∑
k=0

(Ak cosωkt+Bk sinωkt) withωk =
2πk

T
, B0 = 0 (2.1)

T is the period of the function f(t). The amplitudes or Fourier coefficients Ak and Bk are deter-

mined in such a way that the infinite series is identical with the function f(t). Equation (2.1)
therefore tellsus that anyperiodic functioncanbe representedasa superpositionof sine-function

and cosine-functionwith appropriate amplitudes –with an infinite number of terms, if need be

– yet using only precisely determined frequencies:

ω = 0,
2π

T
,
4π

T
,
6π

T
, . . .

2.1.2 Calculation of the Fourier Coefficients
Beforewe compute the expressions of the Fourier coefficients, we need some tools. In all follow-

ing integrals we integrate from−T/2 to+T/2, meaning over an interval with the period T that
is symmetrical to t = 0. We could also pick any other interval, as long as the integrand is peri-
odic with period T and gets integrated over a whole period. The letters n andm in the formulas

below are natural numbers 0, 1, 2, . . . Let’s have a look at the following

∫ +T/2

−T/2

cosωnt dt =

{
0 for n ̸= 0
T for n = 0

(2.2)∫ +T/2

−T/2

sinωnt dt = 0 (2.3)

M.Orlandini 13
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This results from the fact that the areas on the positive half-plane and the ones on the negative

one cancel out eachother, providedwe integrate over awholenumberof periods. Cosine integral

for n = 0 requires special treatment, as it lacks oscillations and therefore areas can’t cancel out
each other: there the integrand is 1, and the area under the horizontal line is equal to the width

of the interval T . Furthermore, we need the following trigonometric identities:

cosα cos β =
1

2
[cos(α− β) + cos(α + β)]

sinα sin β =
1

2
[cos(α− β)− cos(α + β)]

sinα cos β =
1

2
[sin(α− β) + sin(α + β)]

(2.4)

Using these identitieswecandemonstrate that the systemofbasis functions consistingof (sinωkt, cosωkt)
with k = 0, 1, 2, . . . is an orthogonal system. This means that

∫ +T/2

−T/2

cosωnt cosωmt dt =


0 for n ̸= m
T/2 for n = m ̸= 0
T for n = m = 0

(2.5)

∫ +T/2

−T/2

sinωnt sinωmt dt =

{
0 for n ̸= m, n = 0, m = 0
T/2 for n = m ̸= 0

(2.6)∫ +T/2

−T/2

sinωnt cosωmt dt = 0 (2.7)

Please note that our basis system is not an orthonormal system, i.e. the integrals for n = m are

not normalized to 1. What’s evenworse, the special case ofn = m = 0 in (2.5) is a nuisance, and
will keep bugging us again and again.

Using the above orthogonality relations, we are able to calculate the Fourier coefficients straight

away. We need to multiply both sides of (2.1) by cosωkt and integrate from −T/2 to +T/2.
Due to the orthogonality, only terms with k = k′

will remain; the second integral will always

disappear. This gives us:

Ak =
2

T

∫ +T/2

−T/2

f(t) cosωkt dt for k ̸= 0 (2.8)

A0 =
1

T

∫ +T/2

−T/2

f(t) dt (2.9)

Please note the prefactors 2/T or 1/T , respectively, in (2.8) and (2.9). Equation (2.9) simply is
the average of the function f(t). Now let’s multiply both sides of (2.1) by sinωkt and integrate
from−T/2 to+T/2. We now have:

14 M.Orlandini
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Bk =
2

T

∫ +T/2

−T/2

f(t) sinωkt dt for all k (2.10)

Equations (2.8) and (2.10) may also be interpreted like: by weighting the function f(t) with
cosωkt or sinωkt, respectively, we “pick” the spectral components from f(t), when integrating,
corresponding to the even or odd components, respectively, of the frequency ωk.

Ex.2.1 Calculation of Fourier coefficients: Constant and triangular func-
tions

2.1.3 Fourier Series andMusic
While listening to music, we are able to clearly distinguish the sound produced by different in-

struments. The sound coming from a flute is quite different from the sound coming from a

violin, even if they play the same note
1
.

In musical terms, this difference is called timbre and it was von Helmholtz, in the second half
of the XIX century, who understood that (von Helmholtz H. 1885. “On the sensations of tone as a
physiological basis for the theory of music”)

“Each vibratory motion of the air in the ear canal, corresponding to a musical sound, can al-
ways be uniquely regarded as the sum of a number of vibratorymovements.”

or, inmathematical terms, the timbre can be easily explained in terms of Fourier decomposition

of the signal.

Indeed, if we apply Eq. (2.1) and extract the Fourier coefficients for various instruments we will

obtain something like shown in Figure 2.3: it is evident that the harmonic content of different

instruments is quite different.

For example, for the violin we have that the first Fourier frequencies are quite intense (and the

brilliance of the violin sound is due the fact that these harmonics peak in the region where our

ear ismore sensitive). On theotherhand, for the clarinet (here in the chalumeau registry) the even
harmonics are quite faint, giving raise to its characteristic “hollow” sound. The typical metallic

sound of the trumpet is due to the presence of very high harmonics, beyond the 21st.

It is interesting to observe that the harmonic content is different not only for different instru-

ments playing the same note, but also for the same note played by the same instrument (the La
played by a violin on the La string (not fingered) and the La played on the Re string (fingered)),
or the same note played in different octaves. As an example, in Figure 2.4 we show the harmonic

content of all theDo’s in the piano.
1
In general terms, we call pitch of a sound the “perceived” frequency of a musical note, and it is related to the

amount of Fourier frequencies we (that is, our ears) are able to distinguish.

M.Orlandini 15
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Figure 2.2: The triangular function and consecutive approximations by a Fourier series with

more andmore terms
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Figure2.3: Comparisonof aFourierdecompositionof amusical signal playedbydifferent instru-

ments. On the abscissa we list the Fourier frequency index k, while the Y axis shows the power,
in dB, emitted in the single harmonics (fromOlson H.F., “Music, Physics and Engineering”).

Figure 2.4: Comparison of Fourier decomposition of different Do’s played by a piano, from the

left to the right of the keyboard. Note that for the Do1 the fundamental and the lower harmon-
ics are fainter than the higher ones, therefore the pitch is somewhat “virtual”, while the lack of

harmonics inDo6 andDo7makes them an almost pure sound.

M.Orlandini 17
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Figure 2.5: Effects of phase shifts among harmonics in a complex signal: Left: a square wave
obtained by summing the first 21 harmonics all in phase among each other. Central: harmonics
shifted by π/2. Right: random shift.

Note how the lack of harmonics in the higher Do’s, like Do6 and Do7, makes them an almost

“pure sound”. Furthermore, for the Do1 we can notice that the fundamental frequency and the
lower harmonics are fainter than the harmonics between the 10th and the 15th. Despite this,

our ears recognize the sound as a Do1. This phenomenon is called “virtual pitch”, and it is the
demonstration that our brain is a “Fourier analyzer”.

Our brain is therefore able to decompose an acoustic signal in its Fourier components, and is

able to perceive each of them, independently of their phase relationships. In this perspective,

the sentence that Leibniz’ wrote in a letter to Christian Goldbach on April 17, 1712 was prophetic:

“Musica est exercitium arithmeticæ occultum nescientis se numerare animi”2.
The fact that the human brain is not able to perceive phase differences among harmonics is

very important: indeed, the timbre of an instrument would change during the emission of a

sound because of the different velocities of the harmonics along a string. To illustrate this phe-

nomenon, in Figure 2.5 we show a square wave obtained by summing the first 21 harmonics, all

in phase among eachother. In the central panelwe show the shape of thewave obtainedby intro-

ducing a phase shift of π/2, while in the right panel the shift is random. While the wave shapes
are completely different, if the signals are sent to a loudspeaker they are indistinguishable to the

human ear.

2.1.4 Fourier Series in ComplexNotation

In (2.1) the indexk starts from0,meaning thatwewill rule outnegative frequencies in ourFourier
series. The cosine terms didn’t have a problemwith negative frequencies. The sign of the cosine

argument doesn’tmatter anyway, sowewould be able to go halves as far as the spectral intensity

at the positive frequency kω was concerned: −kω and kω would get equal parts, as shown in
Figure 2.6. As frequency ω = 0 (a frequency as good as any other frequency ω ̸= 0) has no
“brother”, it will not have to go halves. A change of sign for the sine-terms arguments would

result in a change of sign for the corresponding series term. The splitting of spectral intensity

like “between brothers” (equal parts of−ωk and+ωk now will have to be like “between sisters”:

the sister for−ωk also gets 50%, but hers isminus 50%!

2Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.
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Figure 2.6: Plot of the “triangular function” Fourier frequencies: Top: Only positive frequencies;
Bottom: Positive and negative frequencies.
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Instead of using (2.1) we might as well use:

f(t) =
+∞∑

k=−∞

(A′
k cosωkt+B′

k sinωkt) (2.11)

where, of course, the following is true: A′
−k = A′

k,B
′
−k = −B′

k. The formulas for the computa-

tion of A′
k and B

′
k for k > 0 are identical to (2.8) and (2.10), though the lack the extra factor 2.

Equation (2.9) forA0 stays unaffected by this. This helps us avoid to provide a special treatment

for the constant term.

Now we’re set and ready for the introduction of complex notation. In the following we’ll always

assume that f(t) is a real function. Generalizing this for complex f(t) is no problem. Ourmost
important tool is Euler identity:

eiαt = cosαt+ i sinαt (2.12)

where i is the imaginary unit (i2 = −1). This allows us to rewrite the trigonometric functions as

cosαt =
1

2
(eiαt + e−iαt)

sinαt =
1

2i
(eiαt − e−iαt)

(2.13)

Inserting these relations into (2.1) we obtain

f(t) = A0 +
∞∑
k=1

(
Ak − iBk

2
eiωkt +

Ak + iBk

2
e−iωkt

)
(2.14)

If we define

C0 = A0

Ck =
Ak − iBk

2

C−k =
Ak + iBk

2
, k = 1, 2, 3, . . .

(2.15)

we finally get

f(t) =
∞∑

k=−∞

Cke
iωkt ωk =

2πk

T
(2.16)

NowCk can be formulated in general terms as

Ck =
1

T

∫ +T/2

−T/2

f(t) e−iωkt dt for k = 0,±1,±2, . . . (2.17)

Please note that there is a negative sign in the exponent. Please also note that the index k runs
from−∞ to+∞ forCk, whereas it runs from 0 to+∞ forAk andBk.
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2.1.5 Theorems andRules
2.1.5.1 LinearityTheorem

Expanding a periodic function into a Fourier series is a linear operation. This means that we

may use the two Fourier pairs:

f(t) ↔ {Ck;ωk}
g(t) ↔ {C ′

k;ωk}
(2.18)

to form the following combination

h(t) = a× f(t) + b× g(t) ↔ {aCk + bC ′
k;ωk} (2.19)

Thus, we may easily determine the Fourier series of a function by splitting it into items whose

Fourier series we already know.

2.1.5.2 The Shifting Rules

Often, we want to know how the Fourier series changes if we shift the function f(t) along the
time axis. This, for example, happens on a regular basis if we use a different interval, e.g. from 0
to T , instead of the symmetrical one from−T/2 to+T/2we have used so far. In this situation,
the First Shifting Rule comes in very handy:

f(t) ↔ {Ck;ωk}
f(t− a) ↔ {Cke

−iωka;ωk}
(2.20)

Proof.

Cnew

k =
1

T

∫ +T/2

−T/2

f(t− a) e−iωkt dt
t′=t−a
=

1

T

∫ +(T/2)−a

−(T/2)−a

f(t′) e−iωkt
′
e−iωka dt′

= e−iωka Cold

k

We integrate over a full period, that’s why shifting the limits of the interval by a does not make
any difference. The proof is trivial, the result of the shifting along the time axis not! The new

Fourier coefficient results from the old coefficient Ck by multiplying it with the phase factor

e−iωka. AsCk generally is complex, shifting “shuffles” real and imaginary parts.

Ex. 2.2 Shifting rules: Triangular function with average equal to zero.
Quarter period shifted triangular function. Half period shifted triangular
function.
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The First Shifting Rule showed us that shifting within the time domain leads to a multiplication
by a phase factor in the frequency domain. Reversing this statement gives us the Second Shifting
Rule:

f(t) ↔ {Ck;ωk}

f(t) e
i 2πa t

T ↔ {Ck−a;ωk}
(2.21)

In other words, a multiplication of the function f(t) by the phase factor ei 2πat/T results in fre-
quencyωk now being related to “shifted” coefficientCk−a instead of the former coefficientCk. A

comparison between (2.21) and (2.20) demonstrates the two-sided character of the two Shifting

Rules. If a is an integer, there won’t be any problem if we simply take the coefficient shifted by

a. But what if a is not an integer?
Strangely enough nothing serious will happen. Simply shifting like we did before won’t work

anymore, but who is to keep us from inserting (k− a) into the expression for oldCk, whenever

k occurs.
Before we present examples, two more ways of writing down the Second Shifting Rule are in

order:

f(t) ↔{Ak;Bk;ωk}

f(t) e
i 2πa t

T ↔
{
1

2
[Ak+a + Ak−a + i (Bk+a −Bk−a)] ;

1

2
[Bk+a −Bk−a + i (Ak−a − Ak+a)] ;ωk

} (2.22)

Caution!This is valid for k ̸= 0. Note that oldA0 becomesAa/2+ iBa/2. The formulas becomes

a lot simpler in case f(t) is real. In this case we get:

f(t) cos
2πat

T
↔
{
Ak+a + Ak−a

2
;
Bk+a +Bk−a

2
;ωk

}
(2.23)

oldA0 becomesAa/2 and

f(t) sin
2πat

T
↔
{
Bk+a −Bk−a

2
;
Ak+a − Ak−a

2
;ωk

}
(2.24)

oldA0 becomesBa/2.

Ex. 2.3 Second Shifting Rule: constant function and triangular function
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2.1.5.3 ScalingTheorem

Sometimeswe happen towant to scale the time axis. In this case, there is no need to re-calculate

the Fourier coefficients. From:

f(t) ↔ {Ck;ωk}

we get: f(at) ↔ {Ck;
ωk

a
}

(2.25)

Here, amust be real! For a > 1 the time axis will be stretched and, hence, the frequency axis
will be compressed. For a < 1 the opposite is true. The proof for (2.25) is easy and follows from

(2.17):

Cnew

k =
a

T

∫ +T/2a

−T/2a

f(at) e−iωkt dt
t′=at
=

a

T

∫ +T/2

−T/2

f(t′) e−iωkt
′/a 1

a
dt′

= Cold

k with ωnewk =
ωoldk

a

Please note that we also have to stretch or compress the interval limits because of the require-

ment of periodicity. Here, we have tacitly assumed a > 0. For a < 0, we would only reverse the
time axis and, hence, also the frequency axis. For the special case a = −1we have:

f(t) ↔{Ck;ωk}
f(−t) ↔{Ck;−ωk}

(2.26)

2.1.6 Partial Sums, Parseval Equation
Forpracticalwork, infiniteFourier serieshave toget terminatedat somestage, regardless. There-

fore, we only use a partial sum, say until we reach kmax = N . ThisN th partial sum then is:

SN =
N∑
k=0

(Ak cosωkt+Bk sinωkt) (2.27)

Terminating the series results in the following squared error:

δ2N =
1

T

∫
T

[f(t)− SN(t)]
2 dt (2.28)

TheT below the integral symbolmeans integrationover a full period. Thisdefinitionwill become

plausible in a second if we look at the discrete version:

δ2N =
1

T

N∑
j=0

(fj − sj)
2

(2.29)
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Please note that we divide by the length of the interval, to compensate for integrating over the

interval T . Now we know that the following is correct for the infinite series:

lim
N→∞

SN =
∞∑
k=0

(Ak cosωkt+Bk sinωkt) (2.30)

provided theAk andBk happen to be the Fourier coefficients. Does this also have to be true for

theN th partial sum? Isn’t there a chance the mean squared error would get smaller, if we used
other coefficients instead of Fourier coefficients? That’s not the case! To prove it, we’ll now insert

(2.27) and (2.28) in (2.30), leave out limN→∞ and get:

δ2N =
1

T

{∫
T

f 2(t) dt− 2

∫
T

f(t)SN(t) dt+

∫
T

S2
N(t) dt

}
=

1

T

{∫
T

f 2(t) dt

−2

∫
T

∞∑
k=0

(Ak cosωkt+Bk sinωkt)
N∑
k=0

(Ak cosωkt+Bk sinωkt) dt

+

∫
T

N∑
k=0

(Ak cosωkt+Bk sinωkt)
N∑
j=0

(Aj cosωjt+Bj sinωjt) dt

}

=
1

T

{∫
T

f 2(t) dt− 2TA2
0 − 2

T

2

N∑
k=1

(A2
k +B2

k) + TA2
0 +

T

2

N∑
k=1

(A2
k +B2

k)

}

=
1

T

∫
T

f 2(t) dt− A2
0 −

1

2

N∑
k=1

(A2
k +B2

k) (2.31)

Here, wemade use of the somewhat cumbersome orthogonality properties (2.5), (2.6) and (2.7).

As theA2
k andB

2
k always are positive, the mean squared error will drop monotonically whileN

increases.

Ex. 2.4 Approximating the triangular function

As δ2N is always positive, we finally arrive from (2.31) at the Bessel inequality

1

T

∫
T

f 2(t) dt ≥ A2
0 +

1

2

N∑
k=1

(A2
k +B2

k) (2.32)

For the border-line case ofN → ∞we get the Parseval equation:
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1

T

∫
T

f 2(t) dt = A2
0 +

1

2

∞∑
k=1

(A2
k +B2

k) (2.33)

Parseval equation may be interpreted as follows: 1/T
∫
f 2(t) dt is the mean squared “signal”

within the time domain, or –more colloquially – the information content. Fourier series don’t lose
this information content: it’s in the squared Fourier coefficients.

2.2 Continuous Fourier Transformation
Contrary to Section 2.1, here we won’t limit things to periodic f(t). The integration interval is

the entire real axis (−∞,+∞). For this purpose we’ll look at what happens at the transition
from a series-representation to an integral-representation:

Series: Ck =
1

T

∫ +T/2

−T/2

f(t) e−iωkt dt

Continuous: lim
T→∞

(TCk) =

∫ +∞

−∞
f(t) e−iωt dt

2.2.1 Definition
Let us define the Forward Fourier Transformation and the Inverse Fourier Transformation as follows:

Definition 2.3 (Forward Fourier transformation).

F (ω) =

∫ +∞

−∞
f(t)e−iωt dt (2.34)

Definition 2.4 (Inverse Fourier transformation).

f(t) =
1

2π

∫ +∞

−∞
F (ω)e+iωt dω (2.35)

Please note that in the case of the forward transformation, there is aminus sign in the exponent

(cf. (2.17)), in the case of the inverse transformation, this is a plus sign. In the case of the inverse

transformation, 1/2π is in front of the integral, contrary to the forward transformation.
The asymmetric aspect of the formulas has tempted many scientists to introduce other defini-

tions, for example to write a factor 1/
√
2π for forward as well as inverse transformation. That’s

no good, as the definition of the average F (0) =
∫ +∞
−∞ f(t) dtwould be affected.

Now let us demonstrate that the inverse transformation returns us to the original function. For

the forward transformation, we often will use FT(f(t)), and for the inverse transformation we
will use FT

−1(F (ω)). We will begin with the inverse transformation and insert:
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Proof.

f(t) =
1

2π

∫ +∞

−∞
F (ω) eiωt dω =

1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t′) e−iωt′ eiωt dt′

=
1

2π

∫ +∞

−∞
f(t′) dt′

∫ +∞

−∞
ei(t−t′)ω dω (2.36)

=

∫ +∞

−∞
f(t′) δ(t− t′) dt′ = f(t)

where δ(t) is the Dirac δ-function3.

2.2.2 Transformation of relevant functions

2.2.2.1 The δ-function

From (2.36), by putting f(t) = 1we have

FT(δ(t)) = 1

FT
−1(1) = 2πδ(ω)

(2.37)

We realize the dual character of the forward and inverse transformations: a very slowly varying

function f(t)will have a very high spectral density for very small frequencies; the spectral den-
sity will go down quickly and rapidly approaches zero. Conversely, a quickly varying function

f(t)will show spectral density over a very wide frequency range (wewill discuss about this issue
in more detail in Section 2.2.6).

2.2.2.2 TheDirac comb

A Dirac comb (also called “sampling function”, see (5.9)), is an infinite sequence of Dirac δ-
functions placed at even intervals of size T :

IIIT (t) ≡
+∞∑
−∞

δ(t− nT ). (2.38)

The Fourier transform of a Dirac comb spacedwith period T is a Dirac comb spacedwith period
1/T (see Figure 2.7, fourth panel)

F IIIT (t)) =
1

T
III 1

T
(ω). (2.39)

3
The δ-function is actually a distribution. Its value is zero anywhere except when its argument is equal to zero.

In this case it is∞.
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Figure 2.7: Fourier transforms of relevant functions. On the right the function, on the left the

corresponding Fourier transformation. From VanderPlas 2018.

2.2.2.3 A sinusoidwith frequencyω0

From the definition of the Fourier transformation we have

F
(
eω0t
)
=

∫ +∞

−∞
e−i(ω−ω0)t dt = δ(ω − ω0). (2.40)

Using the Euler identity (2.12) we can write

cos(ωt) =
eiωt + e−iωt

2
; sin(ωt) =

eiωt − e−iωt

2i
(2.41)

Combining (2.40) and (2.41), along with the linearity of the Fourier transform, we obtain

FT (cos(ω0t)) =
1

2
[δ(ω − ω0) + δ(ω + ω0)]

FT (sin(ω0t)) =
1

2i
[δ(ω − ω0)− δ(ω + ω0)] (2.42)

In other words, a sinusoidal signal with frequency ω0 has a Fourier transform consisting of a

weighted sum of δ-functions at±ω0 (see Figure 2.7, first panel).
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2.2.2.4 TheGaussian function

The prefactor is chosen in such a way that the area under the function is normalized to unity.

f(t) =
1

σ
√
2π

e−
1
2

t2

σ2

Its Fourier transform is

F (ω) =
1

σ
√
2π

∫ +∞

−∞
e−

1
2

t2

σ2 e−iωt dt

=
2

σ
√
2π

∫ +∞

0

e−
1
2

t2

σ2 cosωt dt

= exp

(
−1

2
σ2ω2

)
Again, the imaginary part is null because the function is even. The Fourier transform of a Gaus-

sian results to be another Gaussian. Note that the Fourier transform is not normalized to unit
area.

f(t) hasσ in the exponent denominator, whileF (ω) has it in the exponent numerator: the slim-
mer f(t), the wider F (ω) and vice versa, as shown in Figure 2.7, second panel.

2.2.2.5 The “rectangular” function

Now let us discuss an important example: the Fourier transformof the “rectangular” normalized

function (see Section 2.3.3 for a detailed discussion)

f(t) =

{
1/T for − T/2 ≤ t ≤ +T/2
0 else

Its Fourier transform is

F (ω) =
2

T

∫ +T/2

0

cosωt dt =
sinωT/2

ωT/2
(2.43)

The imaginary part is 0, as f(t) is even. The Fourier transformation of a rectangular function,

therefore, is of the type sinx/x. Some authors use the expression sinc(x) for this case. The “c”

stands for cardinal andwewill discuss about its importance in signal analysis in Section 3.4. The

functions f(t) and F (ω) are shown in Figure 2.7, third panel.

Ex. 2.5 Fourier transformation of relevant functions: bilateral exponen-
tial, unilateral exponential
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2.2.3 Theorems andRules
2.2.3.1 LinearityTheorem

For completeness’ sake, once again:

f(t) ↔F (ω);

g(t) ↔G(ω);

a× f(t) + b× g(t) ↔a× F (ω) + b×G(ω)

(2.44)

2.2.3.2 Shifting Rules

We already know: shifting in the time domainmeansmodulation in the frequency domain, and

amodulation in the time domain results in a shift in the frequency domain

f(t) ↔F (ω);

f(t− a) ↔F (ω) e−iωa

f(t) e−iω0t ↔F (ω − ω0)

(2.45)

2.2.3.3 ScalingTheorem

f(t) ↔F (ω);

f(at) ↔ 1

|a|
F
(ω
a

)
(2.46)

Proof. Analogously to (2.25) with the difference that here we cannot stretch or compress the in-
terval limits±∞:

F (ω)new =
1

T

∫ +∞

−∞
f(at) e−iωt dt

t′=at
=

1

T

∫ +∞

−∞
f(t′) e−iωt′/a 1

a
dt

1

|a|
F (ω)old with ω =

ωold

a

Here, we tacitly assumed a > 0. For a < 0wewould get aminus sign in the prefactor; however,
we would also have to interchange the integration limits and thus get together the factor 1/|a|.
This means: stretching (compressing) the time-axis results in the compression (stretching) of

the frequency-axis. For the special case a = −1we get:

f(t) →F (ω);

f(−t) →F (−ω);
(2.47)
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Therefore, turning around the time axis (“looking into the past”) results in turning around the

frequency axis.

2.2.4 Convolution, ParsevalTheorem
2.2.4.1 Convolution

The convolution of a function f(t)with another function g(t) is defined as:

Definition 2.5 (Convolution).

h(t) =

∫ +∞

−∞
f(ξ) g(t− ξ) dξ ≡ f(t)⊗ g(t) (2.48)

Please note that there is a minus sign in the argument of g(t). The convolution is commutative,

distributive, and associative. This means

commutative: f(t)⊗ g(t) = g(t)⊗ f(t)

distributive: f(t)⊗ (g(t) + h(t)) = f(t)⊗ g(t) + f(t)⊗ h(t)

associative: f(t)⊗ (g(t)⊗ h(t)) = (f(t)⊗ g(t))⊗ h(t)

Beforegoingonwith themathematical demonstrationof the convolution theorem, letuspresent

two physical examples of convolution.

A real observation of a physical phenomenon cannot lasts forever, but will be performed for a

certain amount of time. This corresponds to “convolute” a continuous signal with a rectangular

function, as shown in Figure 2.8. According to the convolution theorem, the Fourier transform

of the convolution is the point wise product of the individual Fourier transforms. This concept

will be discussed into details in the Second Part of the course.

As another example of convolution, let us take a pulse that looks like an unilateral exponential

function

f(t) =

{
e−t/τ

for t ≥ 0
0 else

(2.49)

Any device that delivers pulses as a function of time, has a finite rise-time/decay-time, which for

simplicity’s sake we’ll assume to be a Gaussian

g(t) =
1

σ
√
2π

exp

(
−1

2

t2

σ2

)
(2.50)

That is howourdevicewould represent a δfunction–we can’t get sharper than that. The function

g(t), therefore, is the device’s resolution function, which we’ll have to use for the convolution of
all signals we want to record. An example would be the bandwidth of an oscilloscope. We then

need:
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Figure 2.8: Visualization of the convolution theorem: In the right panels, the black andgray lines

represent the real and imaginary parts of the transforms, respectively. From VanderPlas 2018.

S(t) = f(t)⊗ g(t) (2.51)

where S(t) is the experimental, smeared signal. It’s obvious that the rise at t = 0 will not be as
steep, and the peak of the exponential function will get “ironed out”. We’ll have to take a closer

look:
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S(t) =
1

σ
√
2π

∫ +∞

0

e−ξ/τ exp

(
−1

2

(t− ξ)2

σ2

)
dξ

=
1

σ
√
2π

exp

(
−1

2

t2

σ2

)∫ +∞

0

exp

[
− ξ

τ
+

tξ

σ2
− 1

2

ξ2

σ2

]
dξ

=
1

σ
√
2π

exp

(
−1

2

t2

σ2

)
exp

(
1

2

t2

σ2

)
exp

(
− t

τ

)
exp

(
σ2

2τ 2

)
×∫ +∞

0

exp

{
− 1

2σ2

[
ξ −

(
t− σ2

τ

)]2}
dξ

=
1

σ
√
2π

exp

(
− t

τ

)
exp

(
σ2

2τ 2

)
×∫ +∞

−(t−σ2/τ)

exp

(
−1

2

ξ′2

σ2

)
dξ′ with ξ′ = ξ −

(
t− σ2

τ

)
=

1

2
exp

(
− t

τ

)
exp

(
σ2

2τ 2

)
erfc

(
σ

τ
√
2
− t

σ
√
2

)

(2.52)

Here, erfc(x) = 1− erf(x) is the complementary error function, where

erf(x) =
2√
π

∫ x

0

e−t2 dt (2.53)

Figure 2.9 shows the result of the convolution of the exponential function with the Gaussian.

The following properties immediately stand out: (i)The finite time resolution ensures that there

is also a signal at negative times, whereas it was 0 before convolution. (ii) The maximum is not

at t = 0 anymore. (iii)What can’t be seen straight away, yet is easy to grasp, is the following: the
center of gravity of the exponential function, which was at t = τ , doesn’t get shifted at all upon
convolution.

Nowwe prove the extremely important ConvolutionTheorem:

Theorem 2.1 (Convolution theorem). Let be

f(t) ↔ F (ω)

g(t) ↔ G(ω)

Then

h(t) = f(t)⊗ g(t) ↔ H(ω) = F (ω)×G(ω) (2.54)

The convolution integralbecomes, throughFourier transformation, aproductof theFourier-transformed
ones.
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Figure 2.9: Result of the convolution of an unilateral exponential function with a Gaussian. The

exponential function without convolution is indicated with the thin line

Proof.

H(ω) =

∫ ∫
f(ξ)g(t− ξ) dξ e−iωt dt

=

∫
f(ξ) e−iωξ

[∫
g(t− ξ) e−iω(t−ξ) dt

]
dξ

t′=t−ξ
=

∫
f(ξ) e−iωξ dξ G(ω)

= F (ω)G(ω)

The integration boundaries±∞ did not change by doing that, andG(ω) does not depend on ξ.
The inverse Convolution theorem is:

Theorem 2.2 (Inverse convolution theorem). Let be

f(t) ↔ F (ω)

g(t) ↔ G(ω)

Then

h(t) = f(t)× g(t) ↔ H(ω) =
1

2π
F (ω)⊗G(ω) (2.55)
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Proof.

H(ω) =

∫
f(t) g(t) e−iωt dt

=

∫ (
1

2π

∫
F (ω′) e+iω′t dω′ × 1

2π

∫
G(ω′′) e+iω′′t dω′′

)
e−iωt dt

=
1

(2π)2

∫
F (ω′)

∫
G(ω′′)

∫
ei(ω

′+ω′′−ω)t dt︸ ︷︷ ︸
=2πδ(ω′+ω′′−ω)

dω′dω′′

=
1

2π

∫
F (ω′)G(ω − ω′) dω′

=
1

2π
F (ω)⊗G(ω)

Contrary to the ConvolutionTheorem (2.54) in (2.55) there is a factor 1/2π in front of the convo-
lution of the Fourier transforms.

A widely popular exercise is the unfolding of data: the instruments’ resolution function “smears
out” the quickly varying functions, but we naturally want to reconstruct the data to what they

would look like if the resolution function was infinitely good – provided we precisely knew the

resolution function. In principle, that’s a good idea – and thanks to the ConvolutionTheorem,

not a problem: we Fourier-transform the data, divide by the Fourier-transformed resolution

function and transform it back. For practical applications it doesn’t quite work that way. As

in real life, we can’t transform from −∞ to +∞, we need low-pass filters, in order not to get

“swamped” with oscillations resulting from cut-off errors. Therefore, the advantages of unfold-

ing are just as quickly lost as gained. Actually, the following is obvious: whatever got “smeared”

by finite resolution, can’t be reconstructed unambiguously. Imagine that a very pointed peak

got eroded overmillions of years, so there’s only gravel left at its bottom. Try reconstructing the

original peak from the debris around it! The result might be impressive from an artist’s point of

view, an artifact, but it hasn’t got much to do with the original reality.

Ex. 2.6 Convolution: Gaussian frequency distribution. Lorentzian fre-
quency distribution

2.2.4.2 Cross Correlation

Sometimes, wewant to know if ameasured function f(t) has anything in commonwith another
measured function g(t). Cross correlation is ideally suited to that.
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Definition 2.6 (Cross correlation).

h(t) =

∫ +∞

−∞
f(ξ) g∗(t+ ξ) dξ ≡ f(t) ⋆ g(t) (2.56)

Important note: Here, there is a plus sign in the argument of g, therefore we don’t mirror g(t).
For even functions g(t) this doesn’t matter. The asterisk ∗means complex conjugated. We may
disregard it for real functions. Thesymbol⋆means cross correlation, and isnot tobe confounded
with⊗ for folding. Cross correlation is associative and distributive, yet not commutative. That’s

not only because of the complex-conjugated symbol, but mainly because of the plus sign in the

argument of g(t). Of course, wewant to convert the integral in the cross correlation to a product
by using Fourier transformation.

Theorem 2.3 (Cross correlation). Let be

f(t) ↔ F (ω)

g(t) ↔ G(ω)

Then

h(t) = f(t) ⋆ g(t) ↔ H(ω) = F (ω)×G∗(ω) (2.57)

Proof.

H(ω) =

∫ ∫
f(ξ) g∗(t+ ξ) dξ e−iωt dt

=

∫
f(ξ)

[∫
g∗(t+ ξ) e−iωt dt

]
dξ

=

∫
f(ξ)G∗(+ω) e−iωξ dξ

= F (ω)×G∗(ω)

In the third passage we used the first shifting rule (2.45) with ξ = −a. In the last passagewe use
the following identity:

G(ω) =

∫
g(t) e−iωt dt

G∗(ω) =

∫
g∗(t) e+iωt dt

G∗(−ω) =

∫
g∗(t) e−iωt dt
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The interpretation of (2.57) is simple: if the spectral densities of f(t) and g(t) are a goodmatch,
i.e. have much in common, thenH(ω) will become large on average, and the cross correlation
h(t)will also be large, on average. Otherwise, if F (ω)would be small e.g. whereG∗(ω) is large
and vice versa, so that there is never much left for the productH(ω). Then also h(t) would be
small, i.e. there is not much in common between f(t) and g(t).

2.2.4.3 Autocorrelation

The autocorrelation function is the cross correlation of a function f(t)with itself. We may ask,
for what purpose we’d want to check for what f(t) has in common with f(t). Autocorrelation,
however, seems to attractmanypeople in amagicalmanner. Weoftenhear the view, that a signal

full of noise can be turned into something really good by using the autocorrelation function, i.e.

the signal-to-noise ratiowould improve a lot. Don’t youbelieve awordof it! We’ll seewhy shortly.

Definition 2.7 (Autocorrelation).

h(t) =

∫
f(t) f ∗(ξ + t) dξ (2.58)

From its definition and the cross-correlation theorem (2.57) we have the so called

Theorem 2.4 (Wiener-Khinchin theorem).

f(t) ↔ F (ω)

h(t) = f(t) ⋆ f(t) ↔ H(ω) = F (ω)× F ∗(ω) = |F (ω)|2
(2.59)

Wemay either use the Fourier transform F (ω) of a noisy function f(t) and get angry about the
noise inF (ω), or we first form the autocorrelation function h(t) from the function f(t) and are
then happy about the Fourier transformH(ω) of function h(t). Normally,H(ω) does look a lot
less noisy, indeed. Insteadof doing it the roundaboutwaybyusing the autocorrelation function,

we could have used the square of the magnitude of F (ω) in the first place. We all know, that a
squared representation in the ordinate always pleases the eye, if we want to do cosmetics to

a noisy spectrum. Big spectral components will grow when squared, small ones will get even

smaller. But isn’t it rather obvious that squaring doesn’t change anything to the signal-to-noise

ratio? In order to make it “look good”, we pay the price of losing linearity.

2.2.4.4 TheParsevalTheorem

The autocorrelation function also comes in handy for something else, namely for deriving Par-

seval theorem. We start out with (2.58), insert especially t = 0, and get Parseval theorem:

Theorem 2.5 (Parseval theorem).

h(0) =

∫
|f(t)|2 dt = 1

2π

∫
|F (ω)|2 dω (2.60)
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The second equal sign is obtained by inverse transformation of |F (ω)|2 where, for t = 0, eiωt

becomes unity.

Equation (2.60) states that the information content of the function f(x) – defined as integral over
the square of the magnitude – is just as large as the information content of its Fourier transform
F (ω) (same definition, but with 1/(2π)).

2.2.5 Fourier Transformation of Derivatives
When solving differential equations, we canmake life easier using Fourier transformation. The

derivative simply becomes a product:

f(t) ↔ F (ω)

f ′(t) ↔ iωF (ω)
(2.61)

The proof is straight-forward:

Proof.

FT(f ′(t)) =

∫ +∞

−∞
f ′(t) e−iωt dt = f(t) e−iωt|+∞

−∞ − (−iω)

∫ +∞

−∞
f(t) e−iωt dt

= iωF (ω)

The first term in the partial integration is discarded, as f(t) → 0 for t → ∞, otherwise f(t)
could not be integrable. This game can go on:

FT

(
dfn(t)

dnt

)
= (iω)nF (ω) (2.62)

For negative n we may also use the formula for integration. We can also formulate in a simple
way the derivative of a Fourier transform F (ω)with respect to the frequency ω:

dF (ω)

dω
= −i FT(t f(t)) (2.63)

Proof.

dF (ω)

dω
=

∫ +∞

−∞
f(t)

d

dω
e−iωt dt = −i

∫ +∞

−∞
f(t) t e−iωt dt = −i FT(t f(t))

2.2.6 Fourier Transform andUncertainty Relation
At this point it should be clear that the behavior of a function and its Fourier transform is in a

certain sense complementary: to a function which is “wide spread” in the time domain corre-

sponds a Fourier transformwhich is “narrow” in the frequency domain and vice versa (see, e.g.,

the case for f(t) a constant). This rather qualitative statement can be proven mathematically,

but in order to do that we need the following
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Lemma 2.6 (Cauchy-Schwarz Inequality). Foranysquare integrable functionsz(x)andw(x)defined
on the interval [a, b], ∣∣∣∣∫ b

a

z(x)w(x) dx

∣∣∣∣2 ≤ ∫ b

a

|z(x)|2 dx
∫ b

a

|w(x|2 dx (2.64)

and equality holds if and only if z(x) is proportional tow∗(x) (almost everywhere in [a, b]).

Proof. Assume z(x) and w(x) are real (the extension to complex-valued functions is straight-
forward). Let

I(y) =

∫ b

a

[z(x)− y w(x)]2 dx

=

∫ b

a

z2(x) dx︸ ︷︷ ︸
A

−2y

∫ b

a

z(x)w(x) dx︸ ︷︷ ︸
B

+y2
∫ b

a

w2(x) dx︸ ︷︷ ︸
C

= A− 2By + Cy2

Clearly, I(y) ≥ 0 for ally ∈ R. But if I(y) = A−2By+Cy2 ≥ 0 for ally ∈ R thenB2−AC ≤ 0.
IfB2 −AC = 0, then I(y) has a real double root such that I(k) = 0 for y = k. Therefore (2.64)

holds and if it is an equality, then I(y) has a real root which implies

I(k) =

∫ b

a

[z(x)− k w(x)]2 dx = 0

But this can only occur if the integrand is identically zero; thus z(x) = k w(x) for all x.

Definition 2.8 (Energy and distances for a signal). Supposef(t) isafinite energysignalwithFourier
transformF (ω). Let

E ≡
∫ +∞

−∞
|f(t)|2 dt = 1

2π

∫ +∞

−∞
|F (ω)|2 dω

d2 ≡ 1

E

∫ +∞

−∞
t2 |f(t)|2 dt

D2 ≡ 1

2πE

∫ +∞

−∞
ω2|F (ω)|2 dω

Theorem 2.7 (Uncertainty Principle). If
√
|t| f(t) → 0 as |t| → ∞, then

Dd ≥ 1

2
(2.65)

and equality holds if and only if f(t) has the form f(t) = K e−αt2.
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Proof. Assume f(t) is real. Lemma 2.6 implies∣∣∣∣∫ +∞

−∞
t f

df

dt
dt

∣∣∣∣2 ≤ ∫ +∞

−∞
t2 f 2 dt

∫ +∞

−∞

∣∣∣∣dfdt
∣∣∣∣2 dt (2.66)

Let us define

A ≡
∫ +∞

−∞
t f

df

dt
dt

=
1

2

∫ +∞

−∞
t
df 2

dt
dt

=
1

2
tf 2|+∞

−∞︸ ︷︷ ︸
α

− 1

2

∫ +∞

−∞
f 2 dt︸ ︷︷ ︸

β

when in the last passage we integrated by parts. By assumption

√
|t| f → 0 → |t|f 2 → 0 =⇒

tf 2 → 0. Thus α = 0. Furthermore β = E/2 and so

A = −E

2
(2.67)

Recalling (2.61), the Fourier transformation of derivatives, we have df/dt ↔ iωF (ω). From the

ParsevalTheorem (2.60) we obtain∫ +∞

−∞

∣∣∣∣dfdt
∣∣∣∣2 dt =

1

2π

∫ +∞

−∞
ω2|F (ω)|2 dω (2.68)

Substituting (2.67) and (2.68) into (2.66) we obtain∣∣∣∣−E

2

∣∣∣∣2 = ∣∣∣∣∫ +∞

−∞
t f

df

dt
dt

∣∣∣∣2 ≤ ∫ +∞

−∞
t2f 2 dt︸ ︷︷ ︸

Ed2

× 1

2π

∫ +∞

−∞
ω2|F (ω)|2 dω︸ ︷︷ ︸
ED2

(2.69)

That is

dD ≥ 1

2
(2.70)

If (2.70) is an equality, then (2.66) must be. This is possible only if (Lemma 2.6)

d

dt
f(t) = k t f(t)

which means

f(t) = K e−αt2

Remember that the Fourier transform of a Gaussian is a Gaussian.
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TheUncertaintyRelation (2.70) states thatonecannot jointly localizea signal in timeand frequency
arbitrarily well; either one has poor frequency localization or poor time localization. In signal

analysis, thismeans that nowindow function can be chosenwhich is arbitrarily sharply concen-

trated both in time and frequency domain, and that the function that gives the best compromise

about the “localization” is a Gaussian.

Inquantummechanics, themomentumandpositionwave functionsareFourier transformpairs

(that is conjugate variables), to within a factor of Planck’s constant. With this constant properly

taken into account, the inequality (2.70) becomes the statement of the Heisenberg uncertainty

principle.

2.3 Spectral Leakage
By necessity, every observed signal we process must be of finite extent. The extent may be ad-

justable and selectable, but it must be finite. If we observe the signal for T units of time, in or-
der to apply our continuous Fourier transformationswe performa so-called period extension of our
data, as shown in Figure 2.10a. It is evident that if the periodic extension of a signal does not

commensurate with its natural period, then discontinuities at the boundaries will be present

(see Figure 2.10b). These discontinuities will introduce spurious frequencies, responsible for

spectral contributions over the entire set of frequencies. This effect is called spectral leakage.
In order to clarify why we are talking about leakage, let us take as an example a 3 Hz sine wave,
as in the left panel of Figure 2.11. Suppose that the data are sampled at 1 Hz frequency (that is,

every one second). In this case there is no problem to display the three Hertz sine wave in the

frequency domain, because threeHertz is an integermultiple of the frequency resolution of 1Hz

(we are in the case shown in Figure 2.10a).

On the right panel of Figure 2.11 we show the case when we want to analyze a 2.5 Hz sine wave:

it is not clear how to handle this situation because, due to the acquisition settings, displaying

data at 2.5 Hz is not possible. So the 2.5 Hz signal will leak from zero Hertz to the full band-

width, as shown in Figure 2.12. Thismight be surprising, as intuitively onemight guess that the

spectral leakage would be confined to the adjacent frequency lines (2 Hz and 3 Hz in this case).

But remember: we are performing a period extension of our data, that is, we transform our data

in a continuous periodic signal extended from T = −∞ to T = +∞, in order to apply continu-

ous Fourier transformation. Thismeans that we are spreading the not periodicty over the entire

frequency range.

A signal with leakage (green in Figure 2.12) has lower amplitude and a broader frequency re-

sponse than a signal with no leakage (red in Figure 2.12). This makes it difficult to quantify the

signal properly in the frequency domain.

2.3.1 WindowFunctions
In order to reduce spectral leakage associated with finite observations intervals we apply to the

data weighting functions, called windows. From one viewpoint, the window is applied to data

(as amultiplicative weighting) to reduce the order of the discontinuity of the periodic extension
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(a) The captured signal happened to be periodic, and the recreated signal matches the original.

(b)The captured signal is not periodic, causing discontinuities in the recreated signal.

Figure2.10: Periodic extensionof a sinusoidal signal periodic andnotperiodic in theobservation

interval.
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Figure 2.11: Left: A 3 Hz sine wave has the correct amplitude at a 1 Hz frequency resolution.

Right: When the sine wave is not an integer multiple of the frequency resolution.

Figure 2.12: Frequency spectrum of sine wave aligning with frequency resolution (red) and sine

wave not aligning with frequency resolution (green).
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(Figure 2.13a). This is accomplished by matching as many orders of derivatives (of the weighted

data) as possible at the boundary. The easiest way to achieve thismatching is by setting the value

of thesederivatives to zero or near zero. Thuswindoweddata are smoothly brought to zero at the

boundaries so that the periodic extension of the data is continuous inmany orders of derivatives

(Figure 2.13b).

From another viewpoint, the window is multiplicatively applied to the Fourier frequencies so

that a signal of arbitrary frequency will exhibit a significant component for frequencies close to

the Fourier frequencies. Of course both viewpoints lead to identical results.

In Figure 2.14we show the effect of applying awindow to our data in order to reduce the leakage.

It could be argued that, by applying a window to our data, the signal is not perfectly replicated.

But themain benefit is that the leakage is now confined over a smaller frequency range, instead

of affecting the entire frequency bandwidth of the measurement.

All window functions are, of course, even functions. TheFourier transformsof thewindow func-

tion therefore don’t have an imaginary part. We require a large dynamic range in order to bet-

ter compare window qualities. That’s why we’ll use logarithmic representations covering equal

ranges. And that’s also the reasonwhywe can’t have negative function values. Tomake sure they

don’t occur, we’ll use the power representation, i.e. |F (ω)|2.

2.3.2 Types ofWindowFunctions

There are several different types ofwindow functions thatwe can apply depending on the signal.

An actual plot of a window shows that the frequency characteristic of a window is a continuous

spectrum with a main lobe and several side lobes. The main lobe is centered at each frequency

component of the time-domain signal, and the side lobes approach zero. The height of the side

lobes indicates the affect the windowing function has on frequencies around main lobes (see

Figure 2.15). The side lobe response of a strong sinusoidal signal can overpower the main lobe

response of a nearby weak sinusoidal signal. Typically, lower side lobes reduce leakage but in-

crease the bandwidth of the major lobe. The side lobe roll-off rate is the asymptotic decay rate

of the side lobe peaks. By increasing the side lobe roll-off rate, we can reduce spectral leakage.

Selecting a window function is not a simple task. Each window function has its own character-

istics and suitability for different applications. To choose a window function, wemust estimate

the frequency content of the signal.

❏ If the signal contains strong interfering frequency componentsdistant fromthe frequency

of interest, choose a smoothing window with a high side lobe roll-off rate.

❏ If the signal contains strong interfering signals near the frequency of interest, choose a

window function with a lowmaximum side lobe level.

❏ If the frequency of interest contains two or more signals very near to each other, spectral

resolution is important. In this case, it is best to choose a smoothing window with a very

narrowmain lobe.
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(a) Windows are designed to reduce the sharp transient in the recreated signal as much as possible. The

captured signal is multiplied by the window.

(b)The windowed signal is period extended: the sharp transients are eliminated and smoothed out, even

though the repeated signal does not match the original signal.

Figure 2.13: Effect of application of a window to a not periodic data in the observation interval.

44 M.Orlandini



A.Y. 2024/2025 Temporal Data Analysis

Figure 2.14: Periodic sine wave without leakage (red), non-periodic sine wave with leakage

(green), and windowed non-periodic sine wave with reduced leakage (blue).

❏ If the amplitude accuracy of a single frequency component is more important than the

exact location of the component in a given frequency bin, choose a window with a wide

main lobe.

❏ If the signal spectrum is rather flat or broadband in frequency content, use the uniform

window, or no window.

❏ In general, the Hanning (Hann) window is satisfactory in 95 percent of cases. It has good

frequency resolution and reduced spectral leakage. If we do not know the nature of the

signal but we want to apply a smoothing window, start with the Hann window.

Even if we use nowindow, the signal is convolvedwith a rectangular-shapedwindowof uniform

height, by the nature of taking a snapshot in time of the input signal andworkingwith a discrete

signal. This convolution has a sine function characteristic spectrum. For this reason, nowindow

is often called the uniform or rectangular window because there is still a windowing effect.

The Hamming and Hann window functions both have a sinusoidal shape. Both windows result

in a wide peak but low side lobes. However, the Hann window touches zero at both ends elimi-

nating all discontinuity. TheHammingwindowdoesn’t quite reachzero and thus still has a slight

discontinuity in the signal. Because of this difference, the Hamming window does a better job

of cancelling the nearest side lobe but a poorer job of canceling any others.

These window functions are useful for noise measurements where better frequency resolution

than some of the other windows is wanted but moderate side lobes do not present a problem.
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Figure 2.15: Rectangular window function and its Fourier transform in power representation.

2.3.3 TheRectangularWindow

f(t) =

{
1 for − T/2 ≤ t ≤ T/2
0 else

(2.71)

has the power representation of the Fourier transform (see (2.43)):

|F (ω)|2 = T 2

(
sin(ωT/2)

ωT/2

)2

(2.72)

The rectangular window and this function are shown in Figure 2.15.

2.3.3.1 Zeroes

Where are the zeros of this function? We’ll find them at ωT/2 = lπ with l = 1, 2, 3, . . . and
without the zero! The zeros are equidistant, the zero at l = 0 in the numerator gets plugged by
a zero in the denominator.

2.3.3.2 Intensity at the Central Peak

Now we want to find out how much intensity is at the central peak, and how much gets lost in

the sidebands (sidelobes). To get there, we need the first zero at ωT/2 = π or ω = ±2π/T and:∫ +2π/T

−2π/T

T 2

(
sin(ωT/2)

ωT/2

)2

dω
ωT/2=x
= T 2 2

T 2
2

∫ +2π

0

sin2 x

x
dx = 4T Si(2π) (2.73)

where Si(x) is the sine integral, defined as

Si(x) ≡
∫ x

0

sin y

y
dy (2.74)

The last passage in (2.73) may be proved as follows. We start out with
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∫ π

0

sin2 x

x
dx

and integrate per parts with u = sin2 x and v = −1/x:

∫ π

0

sin2 x

x
dx =

sin2 x

x

∣∣∣∣π
0

+

∫ π

0

2 sinx cosx

x
dx

= 2

∫ π

0

sin 2x

2x
dx

2x=y
= Si(2π)

(2.75)

By means of the Parseval theorem (2.60) we get the total intensity∫ +∞

−∞
T 2

(
sin(ωT/2)

ωT/2

)2

dω = 2π

∫ +T/2

−T/2

12 dt = 2πT (2.76)

The ratio of the intensity at the central peak to the total intensity is therefore

4T Si(2π)

2πT
=

2

π
Si(2π) = 0.903

Thismeans that≈ 90% of the intensity is in the central peak, whereas some 10% are “wasted” in
the sidelobes.

2.3.3.3 Sidelobe Suppression

Now let’s determine the height of the first sidelobe. To get there, we need:

d|F (ω)|2

dω
= 0 or also

dF (ω)

dω
= 0 (2.77)

and this occurs when

d

dx

sinx

x
= 0

x=ωT/2
=

x cosx− sinx

x2

Solving this transcendental equation gives us the smallest possible solution x = 4.4934 or ω =
8.9868/T . Inserting this value in |F (ω)|2 results in:∣∣∣∣F (8.9868

T

)∣∣∣∣2 = T 2 × 0.04719 (2.78)

For ω = 0we get |F (0)|2 = T 2
, the ratio of the first sidelobe height to the central peak height is

therefore 0.04719. It is customary to express ratios between two values spanning several order

of magnitude in decibel (short dB).The definition of decibel is
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dB ≡ 10 log10 x (2.79)

Quite regularly people forget to mention what the ratio’s based on, which can cause confusion.

Here we’re talking about intensity-ratios. If we’re referring to amplitude-ratios, (that is, F (ω)),
this wouldmake precisely a factor of two in logarithmic representation! Herewe have a sidelobe

suppression (first sidelobe) of:

10 log10 0.04719 = −13.2 dB

2.3.3.4 3 dBBandwidth

As the 10 log10(1/2) = −3.0103 ≈ −3, the 3 dB bandwidth tells us where the central peak has
dropped to half its height. This is easily calculated as follows

T 2

(
sin(ωT/2)

ωT/2

)2

=
1

2
T 2

Using x = ωT/2we have

sin2 x =
x

2
or sinx =

x√
2

This transcendental equation has the following solution:

x = 1.3915, thus ω3 dB =
2.783

T

This gives the total width (±ω3 dB):

∆ω =
5.566

T
(2.80)

This is the slimmest central peak we can get using Fourier transformation. Any other window

function will lead to larger 3 dB-bandwidths. Admittedly, it’s more than nasty to stick more

than 10% of the information into the sidelobes. If we have, apart from the prominent spectral

component, another spectral component, with – say – an approx. 10 dB smaller intensity, this

component will be completely smothered by the main component’s sidelobes. If we’re lucky,

it will sit on the first sidelobe and will be visible; if we’re out of luck, it will fall into the gap (the

zero) between central peak andfirst sidelobe andwill get swallowed. So it pays to get rid of these

sidelobes.

Warning!This 3 dB-bandwidth is valid for |F (ω)|2 and not forF (ω)! Since one often uses |F (ω)|
or the cosine-/sine-transformation one wants the 3 dB-bandwidth thereof, which corresponds

to the6dB-bandwidthof |F (ω)|2. Unfortunately,wecannot simplymultiply the 3dB-bandwidth
of |F (ω)|2 by

√
2, we have to solve a new transcendental equation. However, it’s still good as a

first guess because wemerely interpolate linearly between the point of 3 dB-bandwidth and the

point of the 6 dB-bandwidth. We’d overestimate the width by less than 5%.
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2.3.4 The TriangularWindow (FejerWindow)

The first real weighting function is the triangular window:

f(t) =


1 +

2t

T
for − T/2 ≤ t ≤ 0

1− 2t

T
for 0 ≤ t ≤ T/2

0 else

(2.81)

Its Fourier transform is

F (ω) =
T

2

(
sin(ωT/4)

ωT/4

)2

(2.82)

The zeros are twice as far apart as in the case of the “rectangular function”: ωT/4 = lπ or
ω = 4lπ/T with l = 1, 2, 3, . . .The intensity at the central peak is 99.7%. The height of the

first sidelobe is suppressed by 2 × (−13.2 dB) ≈ −26.5 dB. The 3 dB-bandwidth is computed

as follows:

sin
ωT

4
=

1
4
√
2

ωT

4
→ ∆ω =

8.016

T
full width

that is some 1.44 times wider than in the case of the rectangular window. The asymptotic behav-

ior of the sidelobes is−12 dB/octave.

2.3.5 TheGaussWindow

A pretty obvious window function is the Gauss function.

f(t) =

 exp

(
−1

2

t2

σ2

)
for − T/2 ≤ t ≤ +T/2

0 else

(2.83)

Its Fourier transform is

f(ω) = σ

√
π

2
e−

σ2ω2

4

[
erfc

(
−i

σ2ω2

√
2

+
T 2

8σ2

)
+ erfc

(
+i

σ2ω2

√
2

+
T 2

8σ2

)]
(2.84)

As the error function occurswith complex arguments, though togetherwith the conjugate com-

plex argument, F (ω) is real. The function f(t)with σ = 2 and |F (ω)|2 is shown in Figure 2.16.

2.4 Windowing or Convolution?
In principle, we have two possibilities to use window functions:
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Figure 2.16: Gauss window and power representation of the Fourier transform

❏ Either we weight, i.e. we multiply, the input by the window function and subsequently

Fourier-transform, or

❏ WeFourier-transform the input and convolute the resultwith the Fourier transformof the

window function.

According to the ConvolutionTheorem (2.54) we get the same result. What are the pros and cons

of both procedures? There is no easy answer to this question. What helps in arguing is thinking

in discrete data. Take, e.g., a weighting window. Let’s start with a reasonable value for the its

parameter, based on considerations of the trade-off between 3 dB-bandwidth (i.e. resolution)

and sidelobe suppression. In the case of windowing we have to multiply our input data, sayN
real or complex numbers, by the window function which we have to calculate atN points. After

that we Fourier-transform. Should it turn out that we actually should require a better sidelobe

suppression and could tolerate a worse resolution – or vice versa – we would have to go back to

the original data, window them again and Fourier-transform again.

The situation is different for the case of convolution: weFourier-transformwithout any bias con-

cerning the eventually required sidelobe suppression and subsequently convolute the Fourier

data (again N numbers, however in general complex!) with the Fourier-transformed window

function, whichwe have to calculate for a sufficient number of points. What is a sufficient num-

ber? Of course, we drop the sidelobes for the convolution and only take the central peak! This

should be calculated at least for five points, better more. The convolution then actually consists

of five (or more) multiplications and a summation for each Fourier coefficient. This appears

to be more work; however, it has the advantage that a further convolution with another, say

broader Fourier-transformed window function, would not require to carry out a new Fourier

transformation. Of course, this procedure is but an approximation because of the truncation of

the sidelobes. If we included all data of the Fourier-transformedwindow function including the

sidelobes, we had to carry outN (complex) multiplications and a summation per point, already

quite a lot of computational effort, yet still less than a new Fourier transformation. This could
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be relevant for large arrays, especially in two or three dimensions like in image processing and

tomography.
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Chapter 3
Temporal Analysis on Digital Data

As we have already mentioned, every observed signal we process must be of finite extent. Pro-

cessing a finite-duration observation imposes interesting and interacting considerations on the

harmonic analysis. Furthermore, for practicality the data we process areN uniformly (this con-

dition can also be raised) spaced samples of the observed signal. For convenience, N is highly

composite, and we will assumeN is even. The harmonic estimates we obtain through the dis-

crete Fourier transformation (DFT) areN uniformly spaced samples of the associated periodic

spectra. This approach is elegant and attractive when the processing scheme is cast as a spectral

decomposition in anN-dimensional orthogonal vector space. Unfortunately, in many practical
situations, to obtain meaningful results this elegance must be compromised. One such com-

promise consists of applying windows to the sampled data set, or equivalently, smoothing the

spectral samples.

The two operations to which we subject the data are sampling and windowing. These operations

can be performed in either order. We will address the interacting considerations of window se-

lection inharmonic analysis andexamine the special considerations related to sampledwindows

for DFT.

3.1 Discrete Fourier Transformation
Oftenwe do not know a function’s continuous “behavior” over time, but only what happens atN
discrete times:

tk = k∆t, k = 0, 1, 2, . . . , N − 1

In other words: we’ve taken our “pick”, that’s “samples” f(tk) = fk at certain points in time tk.
Any digital data-recording uses this technique. So the data set consists of a series {fk}. Out-
side the sampled interval T = N∆t we don’t know anything about the function. The discrete

Fourier transformation (DFT) automatically assumes that {fk} will continue periodically out-
side the interval’s range. At first glance this limitation appears to be very annoying, maybe f(t)
isn’t periodic at all, and even if f(t)were periodic, there’s a chance that our interval happens to
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correct

wrong

Figure 3.1: Correctly wrapped-around (top); incorrectly wrapped-around (bottom)

truncate at thewrong time (meaning: not after an integer number of periods. See Figure 2.10b).

To make life easier, we’ll also take for granted that N is a power of 2. We’ll have to assume the

latter anyway for the Fast Fourier Transformation (FFT) which we’ll cover in Section 3.5.

3.1.1 Even andOdd Series andWrap-around
A series is called even if the following is true for all fk:

f−k = fk (3.1)

A series is called odd if the following is true for all fk:

f−k = −fk (3.2)

Please note that f0 is compulsory! Any series can be broken up into an even and an odd series.
But what about negative indices? We’ll extend the series periodically:

f−k = fN−k (3.3)

This allows us, by addingN , to shift the negative indices to the right end of the interval, or using
another word, “wrap them around”, as shown in Figure 3.1. Please make sure f0 doesn’t get
wrapped, something that often is done by mistake. The periodicity with period N , which we
always assume as given for the discrete Fourier transformation, requires fN = f0. In the second
example – the one with the mistake – we would get f0 twice next to each other (and apart from
that, we would have overwritten f4).

3.1.2 TheKronecker Symbol or the Discrete δ-Function
Before we get into the definition of the discrete Fourier transformation (forward and inverse

transformation), a few preliminary remarks are in order. From the continuous Fourier trans-
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formation term eiωt we get the discrete times tk = k∆t, k = 0, 1, 2, . . . , N − 1with T = N∆t:

exp(iωt) → exp

(
i
2πtk
T

)
= exp

(
i
2πk∆t

N∆t

)
= exp

(
2πi k

N

)
≡ W k

N (3.4)

We will use the abbreviation for the “kernel”WN as

WN = exp

(
2πi

N

)
(3.5)

Occasionally we will also use the discrete frequencies ωj

ωj =
2πj

N∆t
(3.6)

related to the discrete Fourier coefficientsFj (see below). The kernelWN has the following prop-

erties:

W n
N

N = e2πi n = 1 for all integer n

WN is periodic in j and k with periodN

(3.7)

We can define the discrete δ-function as follow:

N−1∑
j=0

W
(k−k′)j
N = N δk,k′ (3.8)

where δk,k′ is the Kronecker symbol with the following property:

δk,k′ =

{
1 for k = k′

0 else
(3.9)

This symbol (with prefactorN ) accomplishes the same tasks the δ-function had when doing the
continuous Fourier transformation.

3.1.3 Definition of the Discrete Fourier Transformation

Now we want to determine the spectral content {Fj} of the series {fk} using discrete Fourier
transformation. For this purpose, we have tomake the transition in the definition of the Fourier

series:

cj =
1

T

∫ +T/2

−T/2

f(t) e−2πij/T dt −→ 1

N

N−1∑
k=0

fk e
−2πijk/N

(3.10)

with f(t) periodic of period T .
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In the exponent we find k∆t/N∆t, meaning that∆t can be eliminated. The prefactor contains

the sampling raster∆t, so the prefactor becomes∆t/T = ∆t/(N∆t) = 1/N . During the tran-
sition (3.10) we tacitly shifted the limits of the interval from−T/2 to+T/2 to 0 to T , something
that was okay, as we integrate over an integer period and f(t)was assumed to be periodic of pe-
riodT . The sumhas to come to an end atN −1, as this sampling point plus∆t reaches the limit
of the interval. Therefore we get, for the discrete Fourier transformations:

Definition 3.1 (Discrete Fourier transformations).

Fj =
1

N

N−1∑
k=0

fk W
−kj
N withWN = e2πi/N (3.11a)

fk =
N−1∑
j=0

Fj W
+kj
N withWN = e2πi/N (3.11b)

Please note that the inverse Fourier transformation (3.11b) doesn’t have a prefactor 1/N .
A bit of a warning is called for here. Instead of (3.11) we also come across definition equations

with positive exponents for the forward transformation and with negative exponent for the in-

verse transformation. For example Press et al. use this convention, and this is what is used in
X–ray astronomy (see (5.1) at page 91). This doesn’t matter as far as the real part of {Fj} is con-
cerned. The imaginary part of {Fj}, however, changes its sign. Because we want to be consis-
tent with the previous definitions of Fourier series and the continuous Fourier transformation

we’d rather stick with the definitions (3.11) and remember that, for example, a negative, purely

imaginary Fourier coefficient Fj belongs to a positive amplitude of a sine wave (given positive

frequencies), as i of the forward transformation multiplied by i of the inverse transformation
results in precisely a change of sign i2 = −1.
Often also the prefactor 1/N of the forward transformation is missing (again this is the case for

Press et al.) This prefactor has to be there because F0 is to be equal to the average of all samples.

As we will see, also the Parseval theorem will be grateful if we stick with our definition of the

forward transformation. Using (3.8) we can see straight away that the inverse transformation

(3.11b) is correct:

fk =
N−1∑
j=0

Fj W
+kj
N =

N−1∑
j=0

1

N

N−1∑
k′=0

fk′W
−k′j
N W+kj

N

=
1

N

N−1∑
k′=0

fk′
N−1∑
j=0

W
(k−k′)j
N =

1

N

N−1∑
k′=0

fk′N δk,k′ = fk

(3.12)

Ex.3.1 DiscreteFourierTransformation: Constant function. Cosine func-
tion. Sine function.
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3.2 Theorems andRules

3.2.1 LinearityTheorem

If we combine in a linear way {fk} and its series {Fj}with {gk} and its series {Gj}, the we get:

{fk} ↔ {Fj}
{gk} ↔ {Gj}

a× {fk}+ b× {gk} ↔ a× {Fj}+ b× {Gj}
(3.13)

Please always keep inmind that the discrete Fourier transformation contains only linear opera-

tors, but that the power representation is not a linear operation.

3.2.2 Shifting Rules

{fk} ↔ {Fj}
{fk−n} ↔ {FjW

−jn
N } n integer

(3.14)

A shift in the time domain by n results in a multiplication by a phase factorW−jn
N . Let us proof

it:

Proof.

F shifted

j =
1

N

N−1∑
k=0

fk−nW
−kj
N

k−n=k′
=

1

N

N−1−n∑
k′=−n

fk′W
−(k′+n)j
N

=
1

N

N−1∑
k′=0

fk′W
−k′j
N W−nj

N

= F old

j W−nj
N (3.15)

Because of the periodicity of fk, we may shift the lower and the upper summation boundaries
by nwithout a problem.

Ex. 3.2 First Shifting Rule: Shifted cosine withN = 2
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Figure 3.2: Two samples per period: cosine (left ); sine (right)

{fk} ↔ {Fj}
{fkW−nk

N } ↔ {Fj+n} n integer
(3.16)

A modulation in the time domain withW−nk
N corresponds to a shift in the frequency domain.

The proof is trivial.

Ex. 3.3 Second Shifting Rule: Modulated cosine withN = 2

3.2.3 Scaling Rule/Nyquist Frequency
We saw above that the highest frequency ωmax or also −ωmax corresponds to the center of the
series of Fourier coefficients. This we get by inserting j = N/2 in definition of the discrete
frequency (3.6):

ωN/2 =
2π

N∆t

N

2
=

π

∆t
≡ ΩNyq (3.17)

This frequency is calledNyquist frequency or cut-off frequency. This corresponds to take two sam-
ples per period, as shown in Figure 3.2.
While we’ll get away with this in the case of the cosine it definitely won’t work for the sine! Here

we grabbed the samples at the wrong moment, or maybe there was no signal after all. In fact,

the imaginary part of fk at the Nyquist frequency always is 0. The Nyquist frequency therefore

is the highest possible spectral component for a cosine wave; for the sine it is only up to:

ω =
2π(N/2− 1)

N∆t
= ΩNyq(1− 2/N)

Equation (3.17) is our scaling theorem, as the choice of∆t allows us to stretch or compress the
time axis, while keeping the number of samples N constant. This only has an impact on the
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interval

g−1 g0 g1

interval

g0 g1 g7

Figure 3.3: Resolution function {gk}: without wrap-around (left ); with wrap-around (right)

frequency scale running from ω = 0 to ω = ΩNyq. ∆t doesn’t appear anywhere else! The nor-

malization factor we came across in (2.25) and (2.46), is done away with here, as using discrete

Fourier transformation we normalize to the number of samplesN , regardless of the sampling
raster∆t.

3.3 Convolution, ParsevalTheorem

Before we’re able to formulate the discrete versions of the (2.48), (2.56), (2.58), and (2.60), we

have to get a handle on two problems:

❏ The number of samples N for the two functions f(t) and g(t) we want to convolute or
cross-correlate, must be the same. This often is not the case, for example, if f(t) is the
“theoretical” signal we would get for a δ-shaped instrumental resolution function, which,
however, has to be convolutedwith the finite resolution function g(t). There’s a simple fix:

we pad the series {gk}with zeros so we getN samples, just like in the case of series {fk}.

❏ Don’t forget, that {fk} is periodic inN and our “padded” {gk}, too. This means that neg-

ative indices are wrapped-around to the right end of the interval. The resolution function

g(t) mentioned in Figure 3.3, which we assumed to be symmetrical, had three samples
and got padded with five zeros to a total ofN = 8 and is displayed in Figure 3.3.

As long as {fk} is periodic inN , there’s nothingwrongwith the fact upon convolution data from
the end/beginning of the interval will be “mixed into” data from the beginning/end of the inter-

val. If we don’t like that – forwhatever reasons – rather also pad {fk}with zeros, using precisely
the correct number of zeros so {gk}won’t create overlap between f0 and fN−1 any more.

3.3.1 Convolution

Wewill define the discrete convolution as follows:
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Definition 3.2 (Discrete convolution).

hk ≡ (f ⊗ g)k =
1

N

N−1∑
l=0

fl gk−l (3.18)

The “convolution sum” is commutative, distributive and associative. The normalization factor

1/N in context: the convolution of {fk} with the “discrete δ-function” {gk} = Nδk,0 is to leave
the series {fk} unchanged. Following this rule, also a “normalized” resolution function {gk}
should respect the condition

∑N−1
k=0 = N . Unfortunately often the convolution also gets defined

without the prefactor 1/N .
The Fourier transform of {hk} is

Hj =
1

N

N−1∑
k=0

1

N

N−1∑
l=0

fl gk−lW
−kj
N

=
1

N2

N−1∑
k=0

N−1∑
l=0

flW
−lj
N gk−lW

−kj
N W+lj

N

k′=k−l
=

1

N2

N−1∑
l=0

flW
−lj
N

N−1−l∑
k′=−l

gk′W
−k′j
N

= Fj Gj

(3.19)

In our last step we took advantage of the fact that, due to the periodicity inN , the second sum
may also run from 0 to N − 1 instead of −l to N − 1 − l. This, however, makes sure that the

current index l has been totally eliminated from the second sum, and we get the product of the

Fourier transform Fj andGj . So we arrive at the discrete ConvolutionTheorem:

Theorem 3.1 (Discrete convolution theorem). Let be

{fk} ↔ {Fj}
{gk} ↔ {Gj}

Then

{hk} = {(f⊗g)k} ↔ {Hj} = {Fj ×Gj} (3.20)

The convolution of the series {fk} and {gk} results in a product in the Fourier space.

Theorem 3.2 (Inverse discrete convolution theorem). Let be

{fk} ↔ {Fj}
{gk} ↔ {Gj}
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Then

{hk} = {fk} × {gk} ↔ {Hj} = {N(F ⊗G)j} (3.21)

Proof.

Hj =
1

N

N−1∑
k=0

fkgkW
−kj
N =

1

N

N−1∑
k=0

fkgk

N−1∑
k′=0

W−k′j
N δk, k

′

︸ ︷︷ ︸
k′-sum “artificially” introduced

=
1

N2

N−1∑
k=0

fk

N−1∑
k′=0

gk′W
−k′j
N

N−1∑
l=0

W
−l(k−k′)
N︸ ︷︷ ︸

l−sum yieldsNδk,k′

=
N−1∑
l=0

1

N

N−1∑
k=0

fkW
−lk
N

1

N

N−1∑
k′=0

gk′W
−k′(j−l)
N

=
N−1∑
l=0

Fl Gj−l = N(F ⊗G)j

Ex. 3.4 Discrete Fourier Transform: Nyquist frequency withN = 8

3.3.2 Cross Correlation
We define for the discrete cross correlation between {fk} and {gk}, similar to what we did in
(2.56):

Definition 3.3 (Discrete cross correlation).

hk ≡ (f ⋆ g)k =
1

N

N−1∑
l=0

fl × g∗l+k (3.22)

If the indices at gk go beyondN − 1, then we’ll simply subtractN (periodicity). The cross corre-

lation between {fk} and {gk}, of course, results in a product of their Fourier transforms:

{fk} ↔ {Fj}
{gk} ↔ {Gj}

{hk} = {(f⋆g)k} ↔ {Hj} = {Fj ×G∗
j}

(3.23)
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Proof.

Hj =
1

N

N−1∑
k=0

1

N

N−1∑
l=0

fl g
∗
l+kW

−kj
N

=
1

N

N−1∑
l=0

fl
1

N

N−1∑
k=0

g∗l+kW
−kj
N

=
1

N

N−1∑
l=0

fl G
∗
j W

−jl
N = Fj G

∗
j

3.3.3 Autocorrelation
Here we have {gk} = {fk}, which leads to

hk ≡ (f ⋆ f)k =
1

N

N−1∑
l=0

fl × f ∗
l+k (3.24)

and

{fk} ↔ {Fj}
{hk} = {(f⋆f)k} ↔ {Hj} = {Fj × F ∗

j } = {|Fj|2}
(3.25)

In other words: the Fourier transform of the autocorrelation of {fk} is the modulus squared of
the Fourier series {Fj} or its power representation.

3.3.4 ParsevalTheorem
We use (3.24) for k = 0, that is h0, and get on the one side:

h0 =
1

N

N−1∑
l=0

|fl|2 (3.26)

On the other hand, the inverse transformation of {Hj}, especially for k = 0, results in (see
(3.11b))

h0 =
N−1∑
j=0

|Fj|2 (3.27)

Put together, this gives us the discrete version of Parseval theorem:

1

N

N−1∑
l=0

|fl|2 =
N−1∑
j=0

|Fj|2 (3.28)
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3.4 The SamplingTheorem
When discussing the Nyquist frequency, we already mentioned that we need at least two sam-

ples per period to show cosine oscillations at the Nyquist frequency. Now we’ll turn the tables

and claim that as a matter of principle we won’t be looking at anything but functions f(t) that
are “bandwidth-limited”, meaning that outside the interval [−ΩNyq,ΩNyq] their Fourier trans-
formsF (ω) are 0. In other words: we’ll refine our sampling to a degreewherewe justmanage to
capture all the spectral components of f(t). Nowwe’ll skillfully use formulaswe’ve learnedwhen
dealing with the Fourier series expansion and the continuous Fourier transformation with each

other, and then pull the sampling theorem out of the hat. For this purpose we will recall (2.16)

and (2.17) which show that a periodic function f(t) can be expanded into an (infinite) Fourier
series:

f(t) =
∞∑

k=−∞

Cke
iωkt ωk =

2πk

T

Ck =
1

T

∫ +T/2

−T/2

f(t) e−iωkt dt for k = 0,±1,±2, . . .

Since F (ω) is 0 outside [−ΩNyq,ΩNyq], we can continue this function periodically and expand it
into an infinite Fourier series. So we replace: f(t) → F (ω), t → ω, T/2 → ΩNyq, and get

F (ω) =
∞∑

k=−∞

Cke
iπkω/ΩNyq

Ck =
1

2ΩNyq

∫ +ΩNyq

−ΩNyq

F (ω) e−iπkω/ΩNyq dω

(3.29)

A similar integral also occurs in the defining equation for the inverse continuous Fourier trans-

formation (see (2.35)):

f(t) =
1

2π

∫ +ΩNyq

−ΩNyq

F (ω) eiωt dω (3.30)

The integrations boundaries are±ΩNyq, asF (ω) is band-limited. By comparing (3.30)with (3.29)
we have

∫ +ΩNyq

−ΩNyq

F (ω)e−iπkω/ΩNyq dω = 2Ck ΩNyq∫ +ΩNyq

−ΩNyq

F (ω) eiωt dω = 2π f(t)

and the two integrals are the same if
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−iπkω/ΩNyq = iωt → t = − π k

ΩNyq

therefore

2ΩNyqCk = 2πf(−πk/ΩNyq) (3.31)

Once we have inserted this in (3.29) we get:

F (ω) =
π

ΩNyq

+∞∑
k=−∞

f(−πk/ΩNyq) e
iπkω/ΩNyq

(3.32)

When we finally insert this expression in the defining equation (3.30), we get:

f(t) =
1

2π

∫ +ΩNyq

−ΩNyq

π

ΩNyq

+∞∑
k=−∞

f(−πk/ΩNyq) e
iπkω/ΩNyq eiωt dω

=
1

2ΩNyq

+∞∑
k=−∞

f(−k∆t) 2

∫ +ΩNyq

0

cosω(t+ k∆t) dω

=
1

ΩNyq

+∞∑
k=−∞

f(−k∆t)
sinΩNyq(t+ k∆t)

(t+ k∆t)

(3.33)

where we have defined∆t = π/ΩNyq. By replacing k → −k (it’s not important in which order
the sums are calculated) we get the SamplingTheorem:

Theorem 3.3 (Sampling theorem). If a function f(t) contains no frequencies higher thatW cps (that is
is “bandwidth-limited”), then it is completely determined by giving its ordinates at a series of points spaced
1/2W apart. By choosingW = ΩNyq we obtain

f(t) =
+∞∑

k=−∞

f(k∆t)
sinΩNyq(t− k∆t)

ΩNyq(t− k∆t)
(3.34)

In otherwords, we can reconstruct the function f(t) for all times t from the samples at the times

k∆t, provided the function f(t) is bandwidth-limited. To achieve this, we only need tomultiply
f(k∆t)with the function (sinx/x) (with x = ΩNyq(t− k∆t)) and sum up over all samples. The

factor (sinx/x) naturally is equal to 1 for t = k∆t, for other times, (sinx/x) decays and slowly
oscillates towards zero, which means, that f(t) is a composite of plenty of (sinx/x)-functions
at the location t = k∆twith the amplitude f(k∆t). Note that for adequate samplingwith∆t =
π/ΩNyq, each k-term in the sum in (3.34) contributes f(k∆t) at the sampling points t = k∆t
and zero at all other sampling points whereas all terms contribute to the interpolation between

sampling points.
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Figure 3.4: Aliasing is caused when the digital sampling rate is not adequate to capture the fluc-

tuations in an analog signal, and results in the wrong frequency being identified. The red sine

wave is the original signal. The blue dots represent how often the signal is being sampled. The

blue line is how the signal will appear at the wrong frequency due to the low sampling rate.

Ex. 3.5 Sampling theoremwithN = 2

3.4.1 Aliasing
What happens if, for some reason or other, our sampling happens to be too coarse and F (ω)
above ΩNyq was unequal to 0? In Figure 3.4 we show a case, in which the original signal (in red)

is sampled at a frequency such that only one data point is tracked per period (the blue dots). The

blue line represents the reconstructed signal: the amplitude is correct but the frequency is not.

In order to correctly reconstruct not only the amplitude but also the frequency content of the

signal, we need at least two points per period. And the reason is evident from Figure 3.5: on the

left we show the sampling of a sine wave when only one point is sampled per period, fs = fsine.
In this case the amplitude of the reconstructed signal is zero. On the other hand, when we have

at least two points sampled per period (fs = 2fsine), we are able to extract the true frequency of
the sine wave.

Therefore, to properly sample all the desired frequency content of an incoming signal, onemust

sample at (or above) the Nyquist rate. In data acquisition, the sampling frequency is twice as

high as the specified bandwidth. So, all frequency content below the specified bandwidth will

be sampled at a rate sufficient to accurately capture the frequency content.

When the incoming signal contains frequency content above the specified bandwidth, the sam-

pling frequency (2 times thebandwidth)will violate theNyquist theorem(Eq. 3.34) for thishigher

frequency content.
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Figure 3.5: fs represents the sampling frequency, fsine represents the frequency of the sinewave.
a)When sampling at the same frequency as the incoming signal, the observed frequency is zero

Hertz. b)When sampling at twice the frequency of the sinewave, the observed frequency is fsine,
the true frequency of the sine wave.

When the Nyquist theorem is violated, spectral content above the bandwidth is mirrored about

the bandwidth frequency in an accordion-plated fashion. Specifically, for any frequencyω in the
range 0 ≤ ω ≤ ΩNyq, the higher frequencies which are aliased with ω are defined by

(2ΩNyq ± ω), (4ΩNyq ± ω), . . . , (2kΩNyq ± ω), . . . (3.35)

To prove this, observe that, for t = (2π)/(2ΩNyq) = π/ΩNyq

cosωt = cos

[(
2kΩNyq ± ω

) π

ΩNyq

]
= cos

(
2k π ± π

ω

ΩNyq

)
= cos

(
π

ω

ΩNyq

)
(3.36)

Thus all data at frequencies 2kΩNyq ± ω have the same cosine function as data at frequency ω
when sampled at points π/ΩNyq apart. The same for the sine function. For example, if ΩNyq =
100 cps, then data at 30 cps would be aliased with data at frequencies 170 cps, 230 cps, 370 cps,
430 cps, and so forth. Similarly, the power at these confounding frequencies is aliased with the

power in the lower frequencies, because the power quantities depends on terms containing sin2

and cos2 functions.
Thus, higher frequency content appears to be at a lower frequency, or an “alias" frequency, as

shown in Figure 3.6. In other words: spectral density that would appear at≈ 2ΩNyq, appears at

ω ≈ 0! This “corruption” of the spectral density through insufficient sampling is called aliasing,
similar to someone acting under an assumed name. In a nutshell: when sampling, rather err on

thefine side than the coarse one! Coarser rasters can always be achieved later on by compressing

data sets, but it will never work the other way, round!

Let us see how the choice of the frequency resolution affects the signal processing. Because the

“golden equation” of digital processing∆ f = 1/T , we have
• The finer the desired frequency resolution, the longer the acquisition time;
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Figure 3.6: Aliasing causes frequency above the bandwidth to bemirrored across the bandwidth.

• The shorter the acquisition time, or frame size, the coarser the frequency resolution.
In Figure 3.7 two sine tones (100 Hertz and 101 Hertz) have been digitized, and a Fourier Trans-

form performed. This was done with two different frequency resolutions: 1.0 Hertz and 0.5

Hertz.

With the finer frequency resolution of 0.5Hertz, rather than 1.0Hertz, the spectrum shows two

separate and distinct peaks. The benefit of a finer frequency resolution is very obvious. This

might beg the question, why not use the finest frequency resolution possible in all cases?

There is a tradeoff. Per the “golden equation" the amount of time data per frame is higher as the

frequency resolution is made finer. This can cause requirements for long time data acquisition:

◦ 10 Hz frequency resolution is desired, only 0.1 seconds of data is required

◦ 1 Hertz frequency resolution requires 1 second of data

◦ 0.1 Hertz frequency resolution requires 10 seconds of data

◦ 0.01 Hertz frequency resolution requires 100 seconds of data!

In some situations, these long time acquisition requirements are not practical. For example, a

sports carmay go from idle to full speed in just 4 seconds,making a 100 second acquisition, and

the corresponding 0.01 frequency resolution, impossible.

Rather than using the sine formulation of the Fourier Transform, a wavelet formulation can be

used instead (see Section 3.6 for a brief introduction on thewavelet transform). This can address

some of the time-frequency tradeoffs.

As we will see into detail in Part II, two practical methods exist for handling this aliasing prob-

lem. The first method is to choose the Nyquist frequency sufficiently large so that it is phys-

ically unreasonable for data to exist above ΩNyq. In general, it is a good rule to select ΩNyq to

be one-and-a-half or two times greater that themaximum anticipated frequency. The choosing

ΩNyq equal to themaximum frequency of interestwill give accurate results for frequencies below

ΩNyq.

The second method is to filter the data prior to sampling so that the information above a maxi-
mum frequency of interest is no longer contained in the filtered data.

An anti-aliasing filter is a low-pass filter that removes spectral content that violates the Nyquist
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Figure 3.7: Left: Spectrumwith 1.0Hertz frequency resolutionmakes two separate tones appear

as one peak. Right: Spectrum with 0.5 Hertz frequency resolution makes two separate tones

appear as two different peaks.

Figure 3.8: Right: The ideal anti-aliasing filter would be shaped like a wall: cutting off all fre-

quencies beyond the specified bandwidth (fs/2). Right: The anti-aliasing filter has a -3dB roll

off point at the bandwidth.

criteria. This makes it so a 125 Hertz sine wave does not show up as 75 Hertz. The ideal anti-

aliasing filter would be shaped like a “brick wall”, completely attenuating all signals beyond the

specified bandwidth, as shown in the left panel of Figure 3.8.

In the real world, it is impossible to have this “wall shaped” filter. Instead, a very sharp analog

filter is used that has a -3dB roll off at the bandwidth and attenuates all frequencies 20% beyond

the bandwidth to zero as shown in in the right panel of Figure 3.8. This is why the “trustable",

alias-free region of the spectrum is from zeroHz to 80% of the bandwidth. This alias-free range

is called the frequency span.
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Figure 3.9: Aliasing in images: On the left a properly sampled image of a brick wall. On the right

a spatial aliasing creates a Moire pattern

3.4.2 Application toMulti-Variable Signals and Images

The sampling theorem is usually formulated for functions of a single variable. Consequently,

the theorem is directly applicable to time-dependent signals and is normally formulated in that

context. However, the sampling theorem can be extended in a straightforward way to functions

of arbitrarily many variables. Gray-scale images, for example, are often represented as two-

dimensional arrays (or matrices) of real numbers representing the relative intensities of pixels

(picture elements) located at the intersections of row and column sample locations. As a result,

images require two independent variables, or indices, to specify each pixel uniquely – one for

the row, and one for the column.

Similar to one-dimensional discrete-time signals, images can also suffer from aliasing if the

sampling resolution, or pixel density, is inadequate. For example, a digital photograph of a

striped shirt with high frequencies (in other words, the distance between the stripes is small),

can cause aliasing of the shirt when it is sampled by the camera’s image sensor. The aliasing ap-

pears as aMoire pattern (see Figure 3.9). The “solution” to higher sampling in the spatial domain

for this case would be to move closer to the shirt, use a higher resolution sensor, or to optically

blur the image before acquiring it with the sensor.

3.4.3 Geometrical Representation of the Signal

Let us discuss on the sampling theorem in a different way. The 2TW evenly spaced samples of

a signal f(t) can be thought of as coordinates of a point in a space of 2TW dimensions. Each

particular selection of these numbers corresponds to a particular point in this space. Thus there
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is exactly one point corresponding to each signal in the band and with duration T .
The number of dimensions 2TW will be, in general, very high, and needless to say, such a space

cannotbevisualized. It ispossible, however, to studyanalytically thepropertiesof ann-dimensional
space. To a considerable extent, these properties are a simple generalization of the properties

of two- and three-dimensional space, and can often be arrived at by inductive reasoning from

these cases.

The advantage of this geometrical representation of the signals is that we can use the vocabulary

and the results of geometry. If we imagine the 2TW coordinate axes to be at right angles to each

other, then distances in the space have a simple interpretation. The distance from the origin to

a point is analogous to the two- and three-dimensional cases

d =

√√√√2TW∑
k=1

x2
k (3.37)

where xk is the kth sample. From the sampling theorem (3.34) we have

f(t) =
2TW∑
k=1

xk
sin π(2Wt− k)

π(2Wt− k)
(3.38)

therefore ∫ +∞

−∞
f(t)2 dt =

1

2W

2TW∑
k=1

x2
k (3.39)

where we used the property∫ +∞

−∞

sin π(2Wt− k)

π(2Wt− k)

sin π(2Wt− l)

π(2Wt− l)
dt =

{
0 k ̸= l
1

2W
k = l

Hence the square of the distance to a point is 2W times the energy of the corresponding signal

d2 = 2W E = 2W (TP ) (3.40)

where P is the average power over the time T . If we consider only signals whose average power
is less than P , these will correspond to points within a sphere of radius r =

√
2W TP . If noise

is added to the signal in transmission, it means that the point corresponding to the signal has

beenmoved a certain distance in the space proportional to the rms value of the noise. Thus noise

produces a small region of uncertainty about each point in the space.

3.5 Fast Fourier Transform
Cooley and Tukey started out from the simple question: what is the Fourier transformof a series

of numbers with only one real number (N = 1)? There are at least 3 answers:
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❏ From (3.11a) withN = 1 follows:

F0 =
1

1
f0W

−0
1 = f0 (3.41)

❏ From the Parseval theorem (2.60) follows:

|F0|2 =
1

1
|f0|2 (3.42)

Because f0 is real and even, this leads to F0 = ±f0. Furthermore, F0 is also to be equal to

the average of the series of numbers, so there is no chance to get the minus sign.

❏ We know that the Fourier transform of a δ-function results in a constant and vice versa.
How do we represent a constant in the world of 1-term series? By using the number f0.
Howdowe represent in this world a δ-function? By using this number f0. So in this world
there’s no difference any more between a constant and a δ-function. Result: f0 is its own
Fourier transform.

This finding, together with the trick to achieve N = 1 by smartly halving the input again and
again (that’s why we have to stipulate: N = 2p, p integer), (almost) saves us the Fourier trans-
formation. For this purpose, let’s first have a look at the first subdivision. We’ll assume as given:

{fk} withN = 2p. This series will get cut up in a way that one sub-series will only contain the

even elements and the other sub-series only the odd elements of {fk}:

{f1,k} = {f2k} k = 0, 1, 2, . . . ,M − 1

{f2,k} = {f2k+1} M = N/2
(3.43)

Proof.
f1,k+M = f2k+2M = f2k = f1,k (3.44)

because of 2M = N and f periodic inN . Analogously for f2,k.

The respective Fourier transforms are:

F1,j =
1

M

M−1∑
k=0

f1,k W
−kj
M

F2,j =
1

M

M−1∑
k=0

f2,k W
−kj
M

(3.45)

The Fourier transform of the original series is:
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Fj =
1

N

N−1∑
k=0

fk W
−kj
N

=
1

N

M−1∑
k=0

f2k W
−2kj
N +

1

N

M−1∑
k=0

f2k+1 W
−(2k+1)j
N

=
1

N

M−1∑
k=0

f1,k W
−kj
M +

W−j
N

N

M−1∑
k=0

f2,k W
−kj
M j = 0, 1, 2, . . . , N − 1

(3.46)

In our last step we used:

W−2kj
N = e−2×2πikj/N = e−2πikj/(N/2) = W−kj

M

W
−(2k+1)j
N = e−2πi(2k+1)j/N = W−kj

M W−j
N

Together we get (remember thatN = 2M ):

Fj =
1

2
F1,j +

1

2
W−j

N F2,j j = 0, 1, 2, . . . , N − 1

or better

Fj =
1

2
(F1,j +W−j

N F2,j)

Fj+M =
1

2
(F1,j −W−j

N F2,j)
(3.47)

Please note that in (3.47) we allowed j to run from 0 toM − 1 only. In the second line in front of
F2,j there really should be the factor:

W
−(j+M)
N = W−j

N W−M
N = W−j

N W
−N/2
N = W−j

N e−2πiN
2
/N

= W−j
N e−iπ = −W−j

N

(3.48)

This “decimation in time” canbe repeateduntilwefinally endupwith 1-termserieswhoseFourier

transforms are identical to the input number, as we know. The normal Fourier transformation

requiresN2
calculations, whereas here we only need pN = N lnN .

Ex. 3.6 FFT: Saw-tooth withN = 2 andN = 4
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3.6 TheWavelet Transform
As we have discussed in Section 3.5, the traditional FFT decomposes a time signal into its com-

ponent sine functions of various frequency, amplitude, and phase.

From there, a spectrum (a plot of amplitude vs frequency) is generated. It is possible to calculate

many spectra for a single signal to see how the amplitudes and frequencies change with time.

When calculating a spectrum, there is an inverse relationship between observation time and

frequency resolution (the so called “golden equation” discussed in Section 3.4.1, page 66). Es-

sentially, the longer the time-chunk that is analyzed, the finer the frequency resolution that can

be obtained in the spectrum.

This means that when analyzing very short-time events (transients) with a short time window,

the frequency resolution is forced to be rather coarse. If the frequency resolution is refined, the

time block will be much greater than the transient event.

Therefore, when doing an FFT on short time duration events, there is a fair bit of smearing in

the frequency domain due to coarse frequency resolution. When attempting to dial in a finer

frequency resolution, the time domain resolutionwill suffer (Figure 3.10). This is a disadvantage

when using the FFT on short-time events.

On the other hand, the signal can be decomposed into wavelets (instead of sine functions). A

wavelet is a function that rapidly increases, oscillates about a zeromean, and rapidly decays (see

Figure 3.11).

In order to understandhowwavelets correspond to frequency and time, let’s take a look at scaling
and shifting.
Scaling is straight forward, the wavelet is simply stretched or compressed in time.

A stretched wavelet (Figure 3.11, left) helps quantify the slow changing portion of a signal (low

frequency) while a compressed wavelet (Figure 3.11, right) helps quantify the abruptly changing

(high frequency) content of the signal.

The wavelet in the frequency domain has a band-pass characteristic. By stretching and com-

pressing the wavelet, the center frequency of the band-pass filter is shifted higher or lower.

The output of the wavelet analysis is frequency (scale) vs time (shift). The wavelet is both shifted

and scaled to determine how it aligns with various features of the signal.

For the purposes of simplicity, imagine that the wavelet is shifted though the time data. At each

location, the shape of the wavelet is “compared” to the shape of the time data. Similarities be-

tween the time data and wavelet indicate that the frequency content that the wavelet represents

is present (Figure 3.13).

Wavelets of different scales and shifts are convolved with the original signal to determine if the

original signal has similar frequency content.

• Eachwavelet has a corresponding “frequency", and the result of the convolutionwill deter-

mine if the original signal at that particular shift (time) also contains that same frequency.

• Therefore, it canbedeterminedwhat frequency content is present atwhat time viawavelet

analysis.

Essentially, wavelets can be thought of as a discrete-time filter-bank of band-pass filters.

So, what are the main differences between FFT and Wavelet? By nature of the processing type,

the traditional FFT has a fixed relationship between time and frequency. Conversely, thewavelet
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Figure 3.10: Top: Time signal of transient event. Middle: FFT with a 0.02 second frame size

resulting in 50Hz frequency resolution. Fine time resolution, coarse frequency resolution. Bot-

tom: FFT with a 0.20 second frame size resulting in 5Hz frequency resolution. Finer frequency

resolution, coarser time resolution.
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Figure 3.11: Comparison of a sine wave vs a wavelet function. A sine wave oscillates in time from

negative infinity to infinity. Contrarily, a wavelet oscillates for a short time duration.

Figure 3.12: Stretched wavelets (left) represent lower frequencies, while compressed wavelets

(right) represent higher frequencies.

Figure 3.13: Shifting of a wavelet though time data: from left to right the wavelet is shifted in

time relative to the signal being analyzed.
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Figure 3.14: Changeof frequency resolution inFFTandwavelet analysis. Left: TheFFT smear and

resolution is equal at all frequencies. Right: Conversely, wavelets have a variable relationship

between time and frequency.

does not have a fixed relationship between time and frequency.

As shown in Figure 3.14, wavelets have different behavior at different frequencies:

❏ At lower frequencies, the data will be finer in the frequency domain, and more smeared

in the time domain. At lower frequencies, octave bands are narrower, resulting in less

smearing. At high frequencies, octave bands are broader resulting in more smearing.

❏ At higher frequencies, the data will be finer resolution in the time domain, and more

smeared in the frequency domain The change in time resolution is due to the stretching

of the wavelets at low frequency and the shrinking of wavelets at high frequency.

The change in the frequency resolution is due to the fact that the frequency scale for the wavelet

processing is based on octaves.

Figure 3.15 shows the wavelet result of a transient event. Look at the right side of Figure 3.14 to

better understand how data is smeared in a wavelet map as shown in Figure 3.15.

An impulse in the timedomain is representedbybroadband frequency response in the frequency

domain. Most transient events are “impulsive" in nature and therefore have a rather broadband

signature in the frequency domain. Therefore, a fine frequency resolution at high frequencies

is typically not necessary. However, the improved time resolution the wavelet has to offer can be

hugely beneficial when analyzing transients.

3.6.1 Fourier Transform vsWavelet

Let’s takeacloser lookat the results tobetterunderstand thedifferencesbetweenFFTandwavelet

analysis. The colormap results for both the FFT and wavelet transformations are created by

stacking a series of tracked results together.
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Figure 3.15: In a wavelet analysis, at low frequencies the frequency resolution is finer. At high

frequencies, the time resolution is finer.

In the case of the FFT, for each time increment an “amplitude vs frequency" result is created.

These results are stacked together to create the colormap.

In Figure 3.16a, each individual calculation of “amplitude vs frequency" in the “waterfall" map

display (left) is shown. These individual calculations are smoothed together to create the “col-

ormap" display on the right.

Alternatively, the wavelet analysis (3.16b) will create an “amplitude vs time" result for each fre-

quency increment (as specified by thewavelets per octave setting). These individual calculations

(as seen in the waterfall display, left) are smoothed together to create the “colormap" display on

the right.

To conclude the comparison between Fourier and wavelet transform, let us analyze a real case:

piston slap noise. Piston slap occurs when the piston inside of a cylinder hits the cylinder wall

during the operating cycle. This causes an audible transient noise.

It may be desired to know the timing of the piston slap. Traditional FFT methods do not make

it obvious when the piston slap occurs. Alternatively, the wavelet analysis highlights the timing

and the frequency content of the piston slap.

In Figure 3.17, time vs pressure data from amicrophone near an engine block is displayed (top).

Some of the transient events are highlighted. This data is analyzed in twoway: FFT (middle) and

wavelet (bottom).

The wavelet has much better time resolution. The FFT is smeared both in the time domain and

the frequency domain.
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(a) The Fourier transform results in amplitude vs frequency spectra for each increment in time.

(b)The wavelet analysis results in time versus amplitude results for each frequency increment.

Figure 3.16: Comparison of Fourier and wavelet transform analysis. These results are smoothed

together to create the colormap on the right.
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Figure 3.17: Fourier andwavelet transformanalysis onapiston slapnoise. Top: Timehistorywith

multiple transient events. Middle: FFT versus Time analysis does not contain clear indication of

the exact timing and frequency content of the transient events. Bottom: Wavelet analysis shows

both time and frequency content of transients accurately.
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Chapter 4
Procedures for Analyzing Random Data

The procedures for analyzing the properties of random data may be divided logically into two

categories: the procedures for analyzing individual sample records, and the procedures for an-

alyzing a collection of sample records given the properties of the individual records. Applicable

data analysis procedures for these two categories will be now outlined.

4.1 Procedures for Analyzing Individual Records
Anoverall procedure for analyzing pertinent statistical properties of individual sample timehis-

tory records is presented in Figure 4.1. Note that many of the suggested steps in the procedure

might be omitted for some applications while additional steps would be required for other ap-

plications. Each block in Figure 4.1 will now be discussed.

4.1.1 Mean andMean Square Value Analysis
The first step indicated by Block A is a mean andmean square value (or variance) measurement

(also called ANOVA, ANalysis Of VAriance). This step is almost universally performed for one or

more of three sound reasons:

➀ Since the mean and the mean square values are the basic measures of central tendency

and dispersion, their calculation is generally required for even the most rudimentary ap-

plications.

➁ The calculation of a short time averaged mean andmean square value estimates provides

a basis for evaluating the stationarity of the data.

➂ Mean andmean square value estimates can be extracted fromother descriptive properties

(probability density plots, correlograms, and/or power spectra) whichmight bemeasured

later. The comparison of directlymeasuredmean andmean square values estimates to the

corresponding estimates extracted from other analyses provides an excellent method for

checking the data analysis equipment or computer programs for correct operation.

83



Temporal Data Analysis A.Y. 2024/2025

D
.

P
R
O
B
A
B
I
L
I
T
Y

D
E
N
S
I
T
Y
A
N
A
L
Y
S
I
S

C
.

P
O
W
E
R
S
P
E
C
T
R
A
L

D
E
N
S
I
T
Y
A
N
A
L
Y
S
I
S

B
.

A
U
T
O
C
O
R
R
E
L
A
T
I
O
N

A
N
A
L
Y
S
I
S

A
.

M
E
A
N
A
N
D
M
E
A
N
S
Q
U
A
R
E

V
A
L
U
E
A
N
A
L
Y
S
I
S

T
E
S
T
F
O
R

N
O
R
M
A
L
I
T
Y

T
E
S
T
F
O
R

P
E
R
I
O
D
I
C
I
T
I
E
S

T
E
S
T
F
O
R

S
T
A
T
I
O
N
A
R
I
T
Y

G
.

S
P
E
C
I
A
L
I
Z
E
D
D
A
T
A

A
N
A
L
Y
S
I
S

F
.

P
E
R
I
O
D
I
C
A
N
D
A
L
M
O
S
T
-

P
E
R
I
O
D
I
C
D
A
T
A
A
N
A
L
Y
S
I
S

E
.

N
O
N
S
T
A
T
I
O
N
A
R
Y
A
N
D

T
R
A
N
S
I
E
N
T
D
A
T
A
A
N
A
L
Y
S
I
S

M
A
Y
B
E
S
T
A
T
I
O
N
A
R
Y
A
N
D
R
A
N
D
O
M

O
B
V
I
O
U
S
L
Y
N
O
N
S
T
A
T
I
O
N
A
R
Y
O
R
N
O
N
R
A
N
D
O
M

N
O
N
-
G
A
U
S
S
I
A
N

P
E
R
I
O
D
I
C
O
R

A
L
M
O
S
T
P
E
R
I
O
D
I
C

N
O
N
S
T
A
T
I
O
N
A
R
Y

Q
U
A
L
I
F
I
C
A
T
I
O
N

S
T
A
T
I
O
N
A
R
Y

S
T
A
T
I
O
N
A
R
Y
A
N
D

R
A
N
D
O
M
(
W
I
T
H

P
E
R
I
O
C
I
T
I
E
S

I
D
E
N
T
I
F
I
E
D
O
R

R
E
M
O
V
E
D
)

F
i
g
u
r
e
4
.
1
:
G
e
n
e
r
a
l
p
r
o
c
e
d
u
r
e
f
o
r
a
n
a
ly
z
i
n
g
i
n
d
i
v
i
d
u
a
l
s
a
m
p
le
r
e
c
o
r
d
s

84 M.Orlandini



A.Y. 2024/2025 Temporal Data Analysis

4.1.2 Autocorrelation Analysis

Thenext suggestedanalysis is autocorrelation, as indicatedbyBlockB.Theautocorrelation func-

tion of stationary data is the inverse Fourier transform of the power spectral density function

(see (3.25)). Thus the determination of the autocorrelation function will technically not yield

any new information over the power spectrum. There might be applications, however, when an

autocorrelogram would present the desired information in a more convenient format. Auto-

correlation functions can be a useful tool for detecting periodicities in otherwise random data.

Furthermore, autocorrelation functions might be computed as an intermediate step in the cal-

culation of power spectral estimates.

4.1.3 Power Spectral Density Analysis

Perhaps the most important single descriptive characteristic of stationary random data is the

power spectral density function, which defines the frequency composition of the data. For con-

stant parameter linear physical systems, the output power spectrum is equal to the input power

spectrum multiplied by the square of the gain factor of the system. Thus power spectra mea-

surements can yield information concerning the dynamic characteristics of the system. The to-

tal area under a power spectrum (that is

∫
|F (ω)|2 dω) is equal to the mean square value. To be

moregeneral, themean square valueof thedata in any frequency rangeof concern is determined

by the area under the power spectrumbounded by the limits of that frequency range. Obviously,

themeasurement of power spectra data, as indicated in Block C, will be valuable formany anal-

ysis objectives, like detection of periodicities and as an intermediate step in the calculation of

autocorrelation functions.

4.1.4 Probability Density Analysis

The last fundamental analysis included in the procedure is probability density analysis, as indi-

cated by Block D. Probability density analysis is often omitted from a data analysis procedure

because of the tendency to assume that all random phenomena are normally distributed (this

analysis is performed in the so-called Exploratory Data Analysis – EDA). In some cases, how-

ever, random data may deviate substantially from the Gaussian form. If such deviations are

detected by a test for normality, then the probability density function of the data must be mea-

sured to establish the actual probabilistic characteristics of the data. Furthermore, a probability

density function estimate is sometimes used as a basis for a normality test.

4.1.5 Nonstationary and Transient Data Analysis

All of the analysis techniques discussed so far apply only to sample records of stationary data.

If the data are determined to be nonstationary during the qualification phase of the process-

ing, then special analysis techniques will be required as indicated by Block E. Note that certain

classes of nonstationary data can be sometimes be analyzed using the same equipment or com-

M.Orlandini 85



Temporal Data Analysis A.Y. 2024/2025

puter programs employed for stationary data analysis. However, the results of such analyses

must be interpreted with caution.

4.1.6 Periodic and Almost-Periodic Data Analysis

If sinusoids due to periodic or almost-periodic contributions are detected in the data during

the qualification phase, then special attention is warranted. Specifically, one of two approaches

should be followed. First, the sinusoidal components might be isolated from the random por-

tion of the data by filtering operations and analyzed separately, as illustrated byBlock F. Second,

the sinusoidal components might be analyzed along with the random portion of the data, and

simply accounted for in the results. For example, if a power spectrum is computed fordatawhich

include sinusoidal components, a delta function symbol might be superimposed on each spec-

tral peak at the frequency of an identified sinusoid, and labeled with the mean square value of

the sinusoid. Themean square value can be estimated from the spectral plot by multiplying the

maximum indicated spectral density of the peak by the resolution bandwidth used for the analy-

sis. If this is not done, the physical significance of such spectral peaksmight bemisinterpreted.

4.1.7 SpecializedData Analysis

Various other analyses of individual time history records are often required, depending upon

the specific goals of the data processing. For example, studies of fatigue damage in mechani-

cal systems usually involve the calculation of peak probability density functions of strain data.

Spectral descriptions other than power spectral density functions are sometimes desired: for

example, the spectra for acoustic noise levels are commonly presented in terms of rms values in

1/1 or 1/3 octave frequency bands. Such specialized analyses, as indicated by Block G, must be

established in the context of specific engineering problem of concern.

4.2 Procedures for Analyzing a Collection of Records

The preceding Section presented methods for analyzing each individual sample record from an

experiment. A procedure for analyzing further pertinent statistical properties of a collection

of sample records is presented in Figure 4.2. As for the analysis of individual sample records

outlined in Figure 4.1, many of the suggested steps in Figure 4.2 might be omitted for some

applications while additional steps would be required for others. Furthermore, the suggested

steps assume the individual records are stationary.

4.2.1 Analysis of Individual Records

The first step is to analyze the pertinent statistical properties of the individual sample records,

as outlined in Figure 4.1. Hence the applicable portions of Figure 4.1 constitute Block A in Fig-

ure 4.2.
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4.2.2 Test for Correlation
Thenext step indicated by Block B is to determine whether or not the individual sample records

are correlated. In many cases, this decision involves little more than a cursory evaluation of

pertinent physical considerations. For example, if the collection of sample records represent

measurements of a physical phenomenon over widely separated time intervals, then usually the

individual records can be accepted as uncorrelated without further study. On the other hand, if

the collection represents simultaneousmeasurements of the excitation and response of a phys-

ical system, the correlation would be anticipated. For those cases where a lack of correlation is

not obvious from basic considerations, a test for correlation among the sample records should

be performed using cross correlation functions or coherence functions.

4.2.3 Test for Equivalence of UncorrelatedData
If sample records are found to be uncorrelated in Block B, then these records should be tested

for equivalent statistical properties as indicated by Block C.This is an important but often over-

looked step in the analysis of randomdata. Far too often the analyzed results for a large number

of sample records are presented as individual plots when in fact the results differ only by the

amounts which fall within the acceptable limits of random error. The formal presentation of

such redundant data is usually of no value, and can be detrimental in several ways. First, large

quantities of analyzed data will sometimes tend to overwhelm the user and unnecessarily com-

plicate the interpretation of the results. Second, the unsophisticated user might interpret the

statistical scatter in individual results as physically meaningful differences. Third, more accu-

rate results could be presented for the equivalent data if they were pooled prior of plotting, as

will be discussed in the next Section. Note that for most applications, an equivalence of power

spectra is a sufficient criterion for equivalence of sampled data.

4.2.4 Pooling of Equivalent UncorrelatedData
Theanalyzed results for individual sample records which are found to represent equivalent data

should be pooled together as indicated by Block D. This is dome by computing appropriately

weighted averages of the results for the individual records. For example, assume two power

spectral density functionestimateswere computed fromtwouncorrelated sample recordswhich

now we found to represent equivalent data. IfG1(ω) andG2(ω) were the original power spec-
tral estimates with n1 and n2 sampled points, respectively, a new pooled estimate for the power

spectrum is given by

Gp(ω) =
n1G1(ω) + n2G2(ω)

n1 + n2

(4.1)

whereGp(ω)hasnp = n1+n2 sampledpoints. Equation (4.1)may be generalized for q estimates
from uncorrelated but equivalent samples as follows

Gp(ω) =

∑q
i=1 niGi(ω)∑q

i=1 ni

(4.2)

88 M.Orlandini



A.Y. 2024/2025 Temporal Data Analysis

It is clear that the pooling operation produces a power spectrum estimate with a reduced ran-

dom error. However, it should also be noted that the pooling operation generally will not sup-

press the systematic error (bias) in thepower spectra estimates. This fact often leadsdata analyst

to re-process sample records with equivalent statistical properties in a manner designed to re-

duce bias errors. For the case of power spectra estimates, the reprocessing might consist of a

re-computation of power spectral density estimates from the original sample records using a

greatly reduced resolution bandwidth to suppress the bias error at the expense of increase ran-

dom errors. The random errors in the individual estimates are then suppresses by the pooling

operation.

Another approachwhich is sometimesemployedwithanalogdataanalysis equipment is to splice

together the original sample records in order to obtain one long sample record for reprocessing.

This procedure can produce acceptable results, but itmust be remembered that certain inherent

limitations imposed by the length of the original records still apply. Specifically, if q sample
records each of lengthT are spliced together to form a record of length qT , the lowest frequency
which can be defined in the data is still ω = 2π/T and not ω = 2π/(qT ) – see discussion in
Section 5.2.1.

4.2.5 Cross Correlation Analysis

As for the case of autocorrelation andpower spectral density functions, the cross correlation and

cross spectral density functions are Fourier transform pairs. Hence themeasurement of a cross

correlogram will technically not yield any new information over the cross spectrum. However,

it may present desired information in a more convenient format. An example is the measure-

ment of a simple time delay between twomeasurement points. Therefore, the cross correlation

analysis is included in the procedure as a separate step indicated by Block E. Note that a cross

correlation estimate can be used as a test for correlation between two individual records, and as

an intermediate step in the calculation of a cross spectral density estimate.

4.2.6 Cross Correlation Spectral Analysis

Themost important join measurement for a collection of correlated sample records is the cross

spectral density analysis indicated by Block F. Cross spectral density functions provide infor-

mation concerning the linear relationships which might exist among the collection of sample

records.

4.2.7 Coherence Function Analysis

Block G indicates the calculation of coherence functions based upon power and cross spectral

density estimates. Coherence functions of various types (ordinary, multiple, and partial) are

valuable in several ways. First, they can be used to test for correlation among the collection of

sample records. Second, they constitute a vital parameter in assessing the accuracy of frequency

response function estimates.
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4.2.8 Frequency Response Function Analysis
The ultimate goal in the analysis of a collection of sample records is often to establish linear

relationships among the data represented by the various records. The existence of such linear

relationships can be detected from cross correlation, cross spectral density, or coherence func-

tion estimates. However, ameaningful description of the linear relationship is best provided by

computing the frequency response functions of the relationships, as indicated by Block H.

4.2.9 Other DesiredMultiple Analysis
Block I indicates other joint analyses of a collection of sample records needed to satisfy special

data processing goals. Includedmight be joint probability density and distribution functions.
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Chapter 5
Temporal Analysis in X–ray Astronomy

Now we will apply all the mathematical tools developed in Part I to real data. In particular we

will explore the techniques that are commonly used in timing studies of X–ray sources. The

regime we will be referring to is that of equidistantly binned timing data, the background noise

of which is dominated by counting statistics. If there are gaps in the data, they are far apart and

the data are not “sparse” in the sense that nearly all time bins are empty. This kind of data are

eminently suited to analysis with FFT techniques, and the discussed methods will be based on

these techniques.

5.1 Power Spectra in X–ray Astronomy
If we indicate with xk, k = 0, 1, 2, . . . , N − 1, the number of photons detected in bin k by our
instrument, then the discrete Fourier transform aj, with j = −N/2, . . . , N/2− 1, decomposes
this signal intoN sine waves. The following expressions describe the signal transform pair:

Definition 5.1 (Discrete Fourier transform inX–ray astronomy).

aj =
N−1∑
k−0

xk e
2πijk/N j = −N

2
, . . . ,

N

2
− 1 (5.1a)

xk =
1

N

N/2−1∑
j=−N/2

aj e
−2πijk/N k = 0, 1, . . . , N − 1 (5.1b)

ImportantNote: please note the difference between this definition and the definition (3.11). The

signs in the exponents in (5.1) are reversedwith respect to the ones in (3.11). In X–ray astronomy

it is customary the use of the convention as in Press et al. Accordingly, the prefactor 1/N is

present in the inverse discrete Fourier transform and not in the direct one. The consequence is

that a0 will not be anymore the average, but the total number of counts Nph =
∑

k xk. As we

said before, it is only a question of convention.
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If the signal is an equidistant time series of length T , so that xk refers to a time tk = k(T/N),
then the transformisanequidistant “frequency series”, andaj refers toa frequencyωj = 2πνj =
2πj/T . The time step is δt = T/N ; the frequency step is δν = 1/T .
Note that a−N/2 =

∑
k xk e

−πik =
∑

k xk (−1)k = aN/2, and that a0 is nothing else that the
total number of detected photons a0 =

∑
k xk ≡ Nph.

We have already seen that the Parseval theorem relates the aj and xk:

N−1∑
k=0

|xk|2 =
1

N

N/2−1∑
j=−N/2

|aj|2 (5.2)

This implies that there is a relation between the summed squared modulus of the Fourier am-

plitudes and the total variance of the data:

Var(xk) =
∑
k

(xk − x̄)2 =
∑
k

x2
k − 2x̄

∑
k

xk︸ ︷︷ ︸
Nx̄

+N(x̄)2

=
∑
k

x2
k −N(x̄)2 =

∑
k

x2
k −

1

N

(∑
k

xk

)2

(5.2)

=
1

N

∑
j

|aj| −
1

N
|a0|2

Therefore we have

Var(xk) =
1

N

N/2−1∑
j=−N/2

j ̸=0

|aj|2 (5.3)

Adopting the normalization used by Leahy et al. (1983), we will define

Definition 5.2 (Power spectrum).

Pj ≡
2

Nph
|aj|2 j = 0, 1, 2, . . . ,

N

2
(5.4)

whereNph is the total number of photons.

Taking into account that for real data |aj| = |a−j| and that the term at the Nyquist frequency

occurs only once in (5.3), we find the expression for the total variance in terms of Pj :

Var(xk) =
Nph

N

N/2−1∑
j=1

Pj +
1

2
PN/2

 (5.5)
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Note the difference in the indexing of aj and Pj. Often the variance is expressed in terms of the

fractional root-mean-square (rms) variation in the xk:

rms =

√
1

N
Var(xk)

x̄
=

√√√√√ 1

Nph

N/2−1∑
j=1

Pj +
1

2
PN/2

 (5.6)

Sometimes rms is expressed in terms of percentage, and is then called the “percentage rms vari-

ation”. A sinusoidal signal xk = A sin(2πνjtk) at the Fourier frequency νj will cause a spike at
νj in the power spectrumwith

Pj,sine =
1

2

N2

Nph

A2
(5.7)

The reason for choosing this apparently rather awkward normalization for the powers lies in the

statistical properties of the noise power spectrum, to be described later.

Finally, let us discuss on relation between the sampled xk (with Fourier transform aj) and the
continuous function x(t) (with Fourier transform a(ν)). It is easy to understand that xk is given

by a doublemultiplication by two functions:

WindowFunction
w(t) =

{
1 0 ≤ t < T
0 else

(5.8)

Sampling Function

i(t) =
+∞∑

k=−∞

δ

(
t− k

T

N

)
(5.9)

Therefore in order to obtain the power spectrum of xk we must perform a double convolution

with both the window and the sampling functions. The power spectrum of the shifted window

function is (see Section 2.3.3):

|W (ν)|2 =
∣∣∣∣sinπνTπν

∣∣∣∣2 (5.10)

The Fourier transform on an infinitely extended periodic series of δ-functions is

I(ν) =
N

T

+∞∑
k=−∞

δ

(
ν − k

N

T

)
(5.11)

The functionsw(t) and i(t), together with the corresponding power spectraW (ν) and I(ν), are
shown in Figure 5.1.

The convolution of a(ν) withW (ν) causes all features in the power spectrum to become wider.

We have already seen that the convolution with a δ-function at ν0 causes a shift of the function
by ν0: f(ν)∗δ(ν−ν0) = f(ν−ν0)Therefore the convolution of a(ν)with I(ν), which is a series
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of δ-functions with spacingN/T results in a convolved function a(ν) ∗ I(ν) that repeats every
N/T frequency units.
For a real signal x(t) we have, as before, a(−ν) = a∗(ν), so that |a(ν)|2 = |a(−ν)|2: the power
spectrum is symmetric with respect to v = 0. The final result is that the power spectrum of

the convolved function |a(ν) ∗ I(ν)|2 is reflected around the Nyquist frequency νN/2 = 1
2
N/T .

This causes features with a frequency exceeding the Nyquist frequency by νx to appear also at a
frequency νN/2 − νx, a phenomenon we have already seen and known as aliasing.
From their definitions, is is straightforward to show that the discrete Fourier amplitudes aj are
the values at the Fourier frequencies νj = j/T of the windowed and aliased continuous Fourier
transform aWI(ν)

aWI(ν) = a(ν) ∗W (ν) ∗ I(ν) =
∫ +∞

−∞
x(t)w(t) i(t) e2πiνt dt =∫ +∞

−∞
x(t)

N−1∑
k=0

δ

(
t− k

T

N

)
e2πiνt dt =

N−1∑
k=0

x

(
k
T

N

)
e2πiνkT/N

(5.12)

so that aWI(j/T ) = aj. Explicitly performing the convolution of a(ν)with I(ν)we finally have

aj = aWI(j/T ) = aW(j/T ) ∗ aI(j/T ) =
N

T

+∞∑
k=−∞

aW

(
vk − k

N

T

)
(5.13)

were we used (5.11) and where νj = j/T and aW = a(ν) ∗W (ν).
To summarize: the transition from the continuous Fourier transform to the discrete Fourier

transform involves two operations: windowing, a convolution with the functionW (ν)which is
essentially a peak with a width δν = 1/T plus sidelobes, and aliasing, a reflection of features

above the Nyquist frequency back into the range (0, νN/2). Windowing is caused by the finite
extent, aliasing by the discrete sampling of the data.

In practice, aliasing is not so much of a problem as one might fear, as the data are not really

discretely sampled at intervals δt = T/N , but rather binned into time bins with awidth δt. This

is equivalent of convolving with the “binning window”

b(t) =


N/T − T

2N
< t <

T

2N

0 else

(5.14)

before the discrete sampling. Applying the inverse convolution theorem, we can see that the

effect of this on the Fourier transformwill be that a(ν) is multiplied with the transform of b(t):

B(ν) =
sin πνT/N

πνT/N
(5.15)

This function drops from a value of 1 at ν = 0 to 0 at ν = N/T ; halfway, at the Nyquist fre-
quency it has the value 2/π. The effect of this multiplication is a considerable repression of the

M.Orlandini 95



Temporal Data Analysis A.Y. 2024/2025

high-frequency features that could be aliased back into the frequency range (0, νN/2). This is

understandable: the effect of the binning is nothing else than averaging the time series over the

bin width T/N so that variations with a frequency close toN/T are largely averaged out.
The problem caused by the windowing can be more serious: the “leakage” cause by the finite

width of the central peak of W (ν) and its sidelobes can strongly distort steep power spectra
(they becomes less steeper) and it can spread out δ-functions over the entire power spectrum.

5.2 Power Spectral Statistics
In general, signal processing is devoted to detection and estimation. Detection is the task of deter-
mining if a specific signal set is present in the observation,while estimation is the taskof obtain-

ing the values of the parameters describing the signal. The process of detecting something in a

power spectrum against a background of noise has several steps. To quantify the power of the

source signal, that is to determinewhat the power signalPj,signal would have been in the absence

of noise, wemust consider the interaction between the noise and the signal.
As our starting point we will make the assumption that our signal will be due to the sum of two
independent processes: signal and noise. This corresponds to assume xk = xk,signal + xk,noise.

For the linearity of the Fourier transform if bj and cj are the Fourier transforms of xk,signal and

xk,noise, then aj = bj + cj. Thismeans that a similar properties does not apply to power spectra:

|aj|2 = |bj + cj|2 = |bj|2 + |cj|2 + cross terms (5.16)

If the noise is random and uncorrelated, and if many powers are averaged, then the cross terms

will tend to average out to zero, and we can write down

Pj = Pj,signal + Pj,noise (5.17)

5.2.1 The Probability Distribution of theNoise Powers
For awide range of type of noise, the noise powersPj,noise follow aχ

2
distributionwith 2 degrees

of freedom (dof). Indeed, if Aj and Bj are the Fourier coefficient of the noise signal, then the

Parseval theorem says that Pj,noise = A2
j + B2

j . But Aj and Bj are linear combinations of the

xk, therefore if xk are normally distributed, then the Aj and Bj do as well, so that Pj,noise, by

definition, is distributed according to the χ2
distribution with 2 dof.

If the xk follow some other probability distribution, for example the Poisson distribution, then

it follows from the central limit theorem that for “certain” conditions on this other distribution

(i.e. for largeN ), theAj andBj will be approximately normally distributed.

In practice, onefinds out that noise powers are nearly alwaysχ2
distributed, not only for Poisson

noise, but also for many other type of noise.

Thepower spectrumnormalization defined in (5.4) is chosen in such away that if the noise in the

photon countingdataxk is purePoissonian countingnoise, then thedistributionof thePj, noise
is exactly given by a χ2

distribution with 2 dof. Therefore the probability to exceed a certain

threshold power level Pthr is given by
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Prob(Pj,noise > Pthr) = Q(Pthr|2) j = 1, 2, . . . , N/2− 1 (5.18)

where the integral probability of the χ2
is defined as

Q(χ2|n) = 1

2n/2 Γ
(n
2

) ∫ ∞

χ2

t
n
2
−1 e−

t
2 dt (5.19)

where n is the number of dof.
Because the Pj,noise follow this distribution, the power spectrum is very noisy; the standard de-

viation of the noise powers is equal to their mean value:

σPj
= ⟨Pj⟩ = 2 (5.20)

Twomore or less equivalent methods are often used to decrease the large variance of the Pj,noise

(see discussion in Section 4.2.4)

❏ Rebin the power spectrum, averaging b consecutive frequency bins;

❏ Divide the data up intoM equal segments, transform these segments each individually

and then average the resultingM power spectra, each normalized according to (5.4). The

Nph is now the number of photons in each transform.

These twomethods, of course, degrade the frequency resolution.

Because the time required to computed the Fourier transform of N data point using an FFT

algorithm is proportional toN logN , there is a computational advantage in the secondmethod;
the time saving factor is about 1 + logM/ logN .
For a variable source, a further advantage of the second method is the possibility to follow the

variations of the power spectra as a function of time and/or intensity (see Figure 5.2).

The first method, on the other hand, has the advantage of producing a power spectrum that

extends to lower frequencies. It is of course possible to combine both methods: each power in

the final spectrumwill be the average ofMb original powers.
Because of the additive properties of the χ2

distribution, the sum ofMb powers is distributed
according to the χ2

distribution with 2Mb dof, so that the probability for a given power Pj,noise

in the average spectrum to exceed a Pthr will be

Prob(Pj,noise > Pthr) = Q(MbPthr|2Mb) (5.21)

For largeMb this distribution tends asymptotically to a normal distribution with a mean of 2
and a standard deviation of 2/

√
Mb:

lim
Mb→∞

Prob(Pj,noise > Pthr) = QGauss

(
Pthr − 2

2/
√
Mb

)
(5.22)

where the integral probability of the normal distribution is

QGauss(x) =
1√
2π

∫ ∞

x

e−t2/2 dt (5.23)
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Figure 5.2: Dynamic power spectrum of the low mass X–ray binary 4U 1728–34. The color map

shows increasing power in the order green, red, blue, and white. The time increases along the

horizontal axis with a resolution of 1 sec. The total time shown is 32 sec. During the burst (the

yellow line) the source exhibits pulsation at∼ 363Hz (Strohmayer et al. 1996. ApJ 469, L9)

5.2.2 TheDetection Level: TheNumber of Trials
Assuming the χ2

properties of the noise powers (5.21) we can now determine how large a power

must be to constitute a significant excess above the noise.

Definition 5.3 (Detection level). Let us define (1− ε) the confidence detection at levelPdet as the power
level that has only the small probability ε to be exceeded by a noise power.

So, if there is a power Pj that exceeds Pdet, then there is a large probability (1− ε) that Pj is not

purely due to noise, but also contains signal power Pj,signal (this is because of (5.17)).

Because of thewaywehave built our power spectrum, eachPj will be the sumofMbpower spec-
tra (or less if only certain frequency range in the spectrum is considered). We call the number

of different Pj values the number of trialsNtrial. The probability to exceed Pdet by noise should
have the small value ε for all the powers in the frequency range of interest together, so that the
chance per trial should have the much smaller value of

(1− ε)1/Ntrial ≃ ε

Ntrial

for ε ≪ 1 (5.24)

So the detection level Pdet is

ε

Ntrial

= Q(MbPdet|2Mb) (5.25)

As an example, if in a power spectrum normalized according (5.4) we find a feature at a level

of 44, the probability of finding a χ2 > 44 for 2 dof by chance is Q(44|2) = 3 · 10−10
. Taking

into account Ntrial = 65000 we obtain that the probability of finding our feature by chance is
3 · 10−10 × 65000 = 2 · 10−5

: so our feature is quite significant!
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Figure 5.3: Confidence detection level at the 90% (continuous) and 99% (dashed) as a function of

the number of trials. The number of independent powers,Mb, averaged together due to rebin-
ning of the power spectra by a factor b and averagingM different power spectra increases by a

factor 2 in consecutive curves. The trials are assumed to be independent, so no overlaps between

the b-bins averages are allowed. As an example, for a power spectrumproduced by averaging to-

gether 2 “raw” spectra of 4096 bins each and binning up the resulting spectrum by a factor 4 to

produce a 1024-bin average spectrum, the 90% confidence detection level can be read from the

curveMb = 2× 4 = 8 atNtrial = 1024 to be 5.8.

In Figure 5.3 Pdet is plotted as a function ofNtrial for various values ofMb and for a confidence
level of 90% (ε = 0.1), and 99% (ε = 0.01). Note that althoughPdet increases with the number of
trialsNtrial, the increase is relatively slow.

5.3 The Signal Power
Any quantitative statement one canmake about the signal powerPj,signal will be a statement of a

probability based on the probability distribution of the noise powersPj,noise because, from (5.17),

Pj,signal = Pj − Pj,noise (5.26)

Therefore, supposing we have a detection (i.e. for a given j it is true that Pj > Pthr), then what
is the probable value of the signal power Pj,signal at j?
If we define a “limiting noise power level” PNL that has only a small probability ε

′
to be exceeded

in one trial

ε′ = Q(MbPNL|2Mb) (5.27)
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then, with confidence (1 − ε′), we can say that, for a given j, Pj,noise < PNL. Therefore, from

(5.26)

Pj,signal > Pj − PNL (1− ε′) confidence (5.28)

If no significant power level has been attained by any of the Pj, then it is useful to determine an

upper limit to the signal power. The (1 − δ) confidence upper limit PUL to the signal power is
defined as the power level for which Pj,signal < PUL at (1 − δ) confidence, irrespective of where
this signal power may have occurred.

TodeterminePULwedefineapower levelPexce that has the largeprobability (1−δ) to be exceeded
by a given individual Pj,noise:

(1− δ) = Q(MbPexce|2Mb) (5.29)

So a fraction of approximately (1 − δ) of all powers considered will exceed Pexce in absence of
source signal. We now find the largest observed power Pmax in the given frequency interval, and
write

PUL = Pmax − Pexce (5.30)

In Figure 5.4 we show the relations between the different quantities defined so far.

5.3.1 Sensitivity to Signal Power

It is sometimes useful to predict the capabilities of a planned experiment in terms of its sensi-

tivity to signal power. The sensitivity level Psens can be calculated on the basis of the expected
probability distribution of the noise power as

Psens = Pdet − Pexce (5.31)

If there occurs a Pj,signal somewhere in the spectrum that exceeds Psens then it will be detected
with (1− δ) confidence (see Figure 5.4).

5.3.2 The rmsVariation in the Source Signal

Assuming that the signal power spectrum has been properly separated from the total power

spectrum, we can convert the signal power into the rms variation of the source signal xk using

the expression

rms =

√
b
∑

j Pj,signal

Nph

(5.32)

wherePj is anMb times averaged power and whereNph is the number of photons per transform.
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Figure 5.4: Relations between the detection level Pdet, the exceeded level Pexce, the maximum
observed power Pmax, the upper limit PUL and the sensitivity level Psens.

5.4 Detection of Features

If the signalpowerof anarrowfeature inapower spectrumisPsignal, then itwill drop toPsignal/Mb
after the frequency resolutionhas beendegradedby a factorMbbyoneof themethodsdescribed
above. Also the detection level degrades, both because the probability distribution of the noise

powers in the average power spectrum becomes narrower and because the number of trials de-

creases by a factorMb.

However, in the final analysis the sensitivity level always drops more slowly that 1/Mb, so that
the conclusion is that fordetectinganarrowfeature in thepower spectrumthehighest sensitivity is reached
for the maximum possible frequency resolution, that isMb = 1.
Similar reasoning shows that for a feature of finite width∆ν the signal power summed over all
frequency bins in the feature will drop proportionally to 1/Mb when the frequency resolution
of the power spectrum is degraded. However, as long as the width of the feature exceeds the

frequency resolution∆ν > Mb/Tobs, whereTobs = MT is the total duration of the observation,
the signal power in one frequency bin within the feature will remain constant.

5.5 Power Spectral SearchesMade Easy

In this sectionwecollect all previous results intoa “how-to” recipe for testing thepower spectrum

for a weak signal using equal statistically independent trials

➀ Determine theM and b. The optimal choice forMb is that which approximately matches
the expectedwidth of the power spectral feature one desires to detect,∆ν ≥ Mb/Tobs (see
Figure 5.5 for the effects of choosing the right b). Note that gaps in the data or the desire
to observe the time evolution of the power spectrummay dictateM .
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Figure 5.5: Effect of choosing the binning size in detecting weak features: the case of the kHz

QPO in4U 1728–34. Thesamedata are shown inboth the twopanels, but the right bin size reveals

the QPO at∼ 800Hz

➁ Calculate theM power spectra normalized according to (5.4). Note that xk is the number

of photons in bin k andNph is the number of photons in one power spectrum.

➂ Average theM power spectra.

➃ Observe the noise power distribution. Is the noise power spectrum flat? Is its mean level

equal to 2? If so, the noise is probably dominated by Poissonian counting statistics. If not,

it is necessary to find out why.

➄ Determine the detection level.

➅ Check the average spectrum for powers exceeding the detection level.

➆ Quantify the signal power in terms of a detection or an upper limit.

➇ Convert the signal power into the relative rms variation of the source signal, defined as

rms =

√
1

N

∑
k

(RATEk − ⟨RATE⟩)2 (5.33)

and compute the excess variance

Excess Variance =

√
rms

2 − 1

N

∑
k

ERROR
2
k (5.34)
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Figure 5.6: Noise classification in astronomical power spectra

➈ To say more about the signal, we need to model its power spectrum.

5.6 Type of Variability

In the previous Sectionwewere left with the last point in our “how-to” with the problemofmod-

eling a power spectrum. In this section we will deal with the problem of linking the shape of a
power spectrumwith the statistical processes that originated the timingvariability. InFigure 5.6

we show a schematic power spectrum of an X–ray source displaying characteristic features: a

continuumdescribed in termsof 1/f noise, aQuasi-PeriodicOscillation (QPO) and a sharppeak
due to a coherent signal (in this case the rotationperiodof the object). Wehave alreadydiscussed

on the Poissonian level; now we will now analyze in details the other components.

5.6.1 1/f Noise

Definition 5.4 (1/f noise). 1/f refers to the phenomenon of the spectral density,S(f), having the form

S(f) = K f−α
(5.35)

where f is the frequency.

1/f noise is an intermediate between the well understood white noise with no correlation in
time and random walk (Brownian motion) noise with no correlation between increments (see

Figure 5.7). Brownianmotion is the integral of white noise, and integration of a signal increases

the exponentα by 2whereas the inverse operation of differentiation decreases it by 2. Therefore,

1/f noise cannot beobtainedby the simpleprocedure of integrationor of differentiationof such
convenient signals. Moreover, there are no simple, even linear stochastic differential equations

generating signals with 1/f noise.
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The widespread occurrence of signals exhibiting such behavior suggests that a generic math-

ematical explanation might exist. Except for some formal mathematical descriptions like frac-

tional Brownianmotion (half-integral of awhite noise signal), however, no generally recognized

physical explanation of 1/f noise has been proposed. Consequently, the ubiquity of 1/f noise
is one of the oldest puzzles of contemporary physics and science in general.

The case of α = 1, or pink noise, is both the canonical case, and the one of most interest, but the
more general form, where 0 < α ≤ 3, is sometimes referred to simply as 1/f . 1/fα

noise is of

interest because it occurs inmanydifferent systems, both in the naturalworld and inman-made

processes (see Figure 5.8) from physics, biology, neuroscience, and psychology.

Although 1/f noise appears inmanynatural systems andhas been intensively studied for decades

withmany attempts to describe the phenomenonmathematically, researchers have not yet been

able to agree on a unified explanation. Thus, there exist at present several formulations of sys-

tems that give rise to S(f) = K/fα
.

5.6.2 Shot Noise Process
First, let tk be a Poisson point process. A shot noise process is obtained by attaching to each tk a
relaxation function (unilateral exponential function)

N(t) = N0e
−λt, t ≥ 0

and summing on k (see Figure 5.9). The Fourier transform of the shot noise process is (see

Page 28)

S(f) = lim
T→∞

1

T
⟨| F (f) |2⟩ = N2

0n

λ2 + f 2

where n is the average rate at which tk occur, and T is the interval over which the process is

observed. As we have already seen, the power spectrum of an unilateral exponential function is

a Lorentzian function. For an aggregation of shot noise processes with λ uniformly distributed
on [λ1, λ2], the power spectrum is

S(f) =



N2
0n if 0 ≪ f ≪ λ1 ≪ λ2

N2
0nπ

2f(λ2 − λ1)
· 1
f

if λ1 ≪ f ≪ λ2

N2
0n · 1

f 2
if 0 ≪ λ1 ≪ λ2 ≪ f

If the impulse response function is a power law,N0x
−β
, the process is called fractal shot noise,

and the power spectrum is of the form

S(f) ≈ k

f 2(1−β)

When β = 1/2, we obtain S(f) ≈ 1/f .
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Figure 5.7: Examples of 1/f noise: on the left the time series and on the right the corresponding
power spectrum

Figure 5.8: Examples of 1/f noise observed in both in the natural world and in man-made pro-
cesses from physics, biology, neuroscience, and psychology
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Figure 5.9: The shot noise process

5.6.3 A Clustering Poisson Point Process

Another example based on a Poisson point process is the clustering Poisson. To each Poisson

point, tk, is attached an additional set of points, called a cluster, that occur after it; clusters can
overlap each other. The number of points in each cluster, m, is a random variable whose dis-

tribution, pm, is concentrated on a finite set of integers. The points in the cluster are spaced

at independent and identically distributed intervals with an arbitrary inter-point distribution.

The power spectral density turns out to be a sum of Lorentzian-like functions. When pm is pro-
portional to 1/m2

we obtain S(f) ∝ 1/f .
A slightly different formulation is a gating process in which clusters do not overlap. Here, a

Poisson point process is multiplied by a gating process that is 1 on a random interval and then

0 on a random interval and so on. To obtain a 1/f noise let the intervals of 1 be exponentially
distributed and the intervals of 0 be geometrically distributed, or vice versa. Then roughly the

same computations as just summarized yield the 1/f approximation. Notice that for the shot
noise processes, the cluster and gating processes, and the AR(1) aggregation (see below), the

power spectral density computation yields a sum of Lorentzian or Lorentzian-like functions.

5.6.4 RecurrenceModels

In these models the signal consists of pulses or events

x(t) = a
∑
k

δ(t− tk).

Here δ(t) is the Dirac delta function, {tk} is a set of the occurrence times at which the particles
or pulses cross the section of observation, and a is the contribution to the signal of one pulse or
particle. The inter-pulse, inter-event, inter-arrival, recurrence or waiting times τk = tk+1 − tk
of the signal are described by the general Langevin equation with multiplicative noise, which is

also stochastically diffuse in some interval, resulting in the power-law distribution.
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Another recurrence timeprocessgeneratingapower-lawprobabilitydistribution is amultiplica-

tive stochastic process

τk+1 = τk + γ τ 2µ−1
k + σ τµk εk,

where the ϵk are independent and identically distributed Gaussian noise, γ is very small and σ,
the standard deviation of the noise, is also small, while µ represents the degree ofmultiplicativ-
ity of the process. A particular form of the model is the autoregressive

1
AR(1) process

(τk − τ̄) = (1− γ)(τk − τ̄) + σϵk,

where τ̄ is the mean of the inter-event intervals.
Notice that the power spectrum of this AR(1) time series process, composed of successive values

of (τk − τ̄), is proportional to 1/f 2
on a long interval when γ is small, and thus this power spec-

trum is not the same as that of the point process (whose points tk generate the time series) on
that interval.

In such point processmodels the intrinsic origin of 1/f noise is in Brownian fluctuations of the
mean inter-event time of the (Poisson-like) signal pulses, similar to Brownian fluctuations of

signal amplitude that result in 1/f 2
noise. The randomwalk of the inter-event time on the time

axis is a property of randomly perturbed or complex systems that display self-organization.

Without enter into the details, other ways of obtaining 1/f noise are through models of a par-
ticular class of stochastic differential equation and through a reversibleMarkov chainmodel.

5.7 Fitting Power Spectra Continuumwith Lorentzians
Instead of describing the observed power spectrum continua in terms of 1/f noise, recently it
has become quite popular a different approach. The power spectrum from X–ray sources like

low-mass X–ray binaries (LMXB) can be described in terms of a flat-top continuum at low fre-

quencies that becomes steeper at high frequencies, with bumps and wiggles. This continuum

canbefitwithout the need of power-law components, but as a sumof Lorentzians, someofwhich

are broad (Belloni et al. 2002).
The power spectra are described as the sum of Lorentzian componentsL(ν) of the form

L(ν) =
r2∆

π

1

∆2 + (ν − ν0)2
(5.36)

1
The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is defined as

Xt = c+

p∑
i=1

φiXt−i + εt

where φ1, . . . , φp are the parameters of the model, c is a constant and εt is white noise. The constant term is

omitted by many authors for simplicity. An autoregressive model can thus be viewed as the output of an all-pole

infinite impulse response filter whose input is white noise.
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where r is the integrated fractional rms (over−∞ to+∞) of each Lorentzian and∆ is its Half-

Width at Half Maximum (HWHM=FWHM/2). The power spectra are then displayed in a ν Pν

plot. The frequency νmax at which the ν Pν attains its maximum is

νmax =
√

ν2
0 +∆2 = ν0

√
1 +

1

4Q2
(5.37)

whereQ ≡ ν0/2∆ is called quality factor. Note that νmax ≥ ν0: the difference is small for narrow
features but becomes large in the case of broad ones. In Figure 5.10 we show an example of such

a fit for two LMXB: XTE 1118+480 and 1E 1724–3045.

With this phenomenological modelization it is possible to use a limited number of fit compo-

nents and compare the power spectra of different sources. But what is the physical mechanism
responsible for the observed shape of the power spectra is still an open issue.

5.8 Quasi-Periodic Oscillations (QPO)
Quasi-Periodic Oscillations (QPO) are broad features observed in the power spectra ofmany X–

ray sources. They are described in terms both of a Gaussian or a Lorentzian shape. As discussed

above, the Lorentzian shape has a physical basis as due to a shot noise process. The QPO can be

therefore characterized by its centroid frequency LC, its width LW, and its normalization LN.

Instead of LN t is customary to give the QPO percentage rms, defined as

percentage rms = 100

√
I

⟨RATE⟩
(5.38)

where I is the Lorentzian integral, defined as

I =
π

2
LC× LW

and ⟨RATE⟩ is the source average count rate. Sometimes, for a QPO is given the quality factor
Q, defined as

Q-factor =
LC

LW

(5.39)

In Figure 5.11 we show a Lorentzian fit to a QPO observed in the low-mass X-ray binary and atoll

source 4U 1735-44.

5.9 Analysis of Unevenly SampledData
Thus far, we have been dealing exclusively with evenly sampled data. There are situations, how-

ever, where evenly sampled data cannot be obtained (for example, for astronomical data, where

the observer cannot completely control the time of observations).
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Figure 5.11: Typical Leahy normalized power spectra in the energy range of 2–18 keV. (a)The kHz

QPO at 1150 Hz; (b) the complex high-frequency noise and the 67 Hz QPO. FromWijnands et al.
1998. ApJ 495, L39

There are someobviousways to get fromunevenly spaced tk to evenly spaced ones. Interpolation
is one way: lay down a grid of evenly spaced times on our data and interpolate values onto that

grid; thenuse FFTmethods. If a lot of consecutive points aremissing,wemight set them to zero,

or might be fix them at the value of the last measured point. Unfortunately, these techniques

perform poorly. Long gaps in the data, for example, often produce a spurious bulge of power at

low frequencies.

A completely different method of spectral analysis of unevenly sampled data was developed by

Lomb and additionally elaborated by Scargle. The Lomb-Scargle method evaluates data, and

sines and cosines, only at times tk that are actually measured.
Suppose that there areN data points hk ≡ h(tk) with k = 0, 1, . . . , N − 1. Then first find the

mean and variance of the data in the usual way

h̄ ≡ 1

N

N−1∑
k=1

hk σ ≡ 1

N − 1

N−1∑
k=1

(hk − h̄)2 (5.40)

Definition 5.5 (Lomb-Scargle normalized periodogram).

PN(ω) ≡
1

2σ2

{[∑
k(hk − h̄) cosω(tk − τ)

]2∑
k cos

2 ω(tk − τ)
+

[∑
k(hk − h̄) sinω(tk − τ)

]2∑
k sin

2 ω(tk − τ)

}
(5.41)

Here τ is defined by the relation

tan(2ωτ) =

∑
k sin 2ωtk∑
k cos 2ωtk

(5.42)

The constant τ is a kind of offset thatmakesPN(ω) completely independent of shifting all the tk
by any constant. This particular choice of τ has another, deeper effect. It makes (5.41) identical
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to the equation that one would obtain if one estimated the harmonic content of a data set, at a

given frequency ω, by linear least-squares fitting to the model

h(t) = A cosωt+B sinωt

This fact gives some insight into why the method can give results superior to FFT methods: it

weight the data on a “per-time interval” basis, when uneven sampling can render the latter se-

riously in error.

Aswe have seen in Section 5.3, the assessment of the signal significance in the case of FFTmeth-

ods is not easy. On the other hand, the significance of a peak in the PN(ω) spectrum can be

assessed rigorously.

The word “normalized” refers to the σ2
factor in the denominator of (5.41). Scargle shows that

with this normalization, at any particular ω and in the case of the null hypothesis that our data
are independent Gaussian random values, then PN(ω) has an exponential probability distribution
with unit mean. In other words, the probability thatPN(ω)will be between some positive z and
z + dz is exp(−z) dz. It readily follows that, if we scan someM independent frequencies, the
probability that none give values larger than z is (1− e−z)M . So

Prob(> z) = 1− (1− e−z)M (5.43)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak in
PN(ω) that we do see. A small value for the false-alarm probability indicates a highly signifi-

cant periodic signal.

To evaluate the significance, we need to knowM . A typical procedure will be to plot PN(ω) as a
function ofmany closely spaced frequencies in some large frequency range. Howmany of them

are independent?

Before answering, let us first see how accurately we need to knowM . The interesting region

is where the significance is a small (significant) number,≪ 1. There (5.43) can be expanded in

series to give

Prob(> z) ≈ M e−z
(5.44)

We see that the significance scale linearly withM . Practical significance levels are numbers like

0.05, 0.01, 0.001, etc, therefore our estimate ofM need not to be accurate.

The results of Monte Carlo experiments aimed to determineM show thatM depends on the

number of frequencies sampled, the number of data points N , and their detailed spacing. It
turns out thatM is verynearly equal toN when thedatapoints are approximately equally spaced

and when the sampled frequencies “fill” (oversample) the frequency range [0,ΩNyq]. Figure 5.12
shows the results of applying a Lomb-Scargle periodogram to a set of N = 100 data points,
Poissonian distributed in time. There is certainly no sinusoidal signal evident to the eye. The

lower plot shows PN(ω) against the frequency ν = ω/2π. The Nyquist frequency that would

obtain if the points were evenly spaced is at νNyq = 0.5Hz. Since we have searched up to about
twice that frequency, andoversampled the ν ’s to the pointwhere successive values ofPN(ω) vary
smoothly, we takeM = 2N . One see a highly significant peak at a frequency of 0.81 Hz. This is

indeed the frequency of the sinewave used to create the data (we have to take ourword for this!).
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Figure 5.12: Example of the Lomb-Scargle algorithm in action. The 100 data points (upper panel)
are at random times between 0 and 100. Their sinusoidal component is readily uncovered (lower
panel) by the algorithm, at a significance level p < 0.001. If the 100 data points had been evenly
spaced at unit interval, the Nyquist frequency would have been 0.5 Hz. Note that, for these

unevenly spaced points, there is no visible aliasing into the Nyquist range
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Note that two other peaks approach but not exceed the 50% significance level: that is about what

one might expect by chance. It is also worth commenting on the fact that the significant peak

was found above the Nyquist frequency and without any significant aliasing down into the Nyquist
interval. That would not be possible for evenly spaced data.

5.10 Analysis of a Coherent Signal
In X–ray astronomy (and in astronomy in general) the detection of coherent signal is quite com-

mon: for example, we detect periodic signal as due to star pulsations, pulse periods in pulsars,

orbital modulations and eclipses, precession.

Two methods of analysis are used to examine data for evidence for periodic signals: FFT and

epoch folding. In general, both techniques have certain advantages and disadvantages in their

application. There latter are worsened both by the presence of gaps in the data and the large

number of statistically independent frequencies which could, in principle, be examined.

Epoch folding is more sensitive to non sinusoidal pulse shapes encountered in X–ray astron-

omy. Furthermore, the technique is relatively insensitive to randomly occurring gaps in the

data so long as the net pulse phase coverage is reasonably uniform. Epoch folding is, however,

extremely computer time-consuming (even if now the increasedCPUpower of the current com-

puters makes this issue less important).

The FFT, on the other hand, is extremely efficient. However, the FFT is difficult to interpret in

the presence of gaps in the data (and in this case is better to use the Lomb-Scargle periodogram

technique, as discussed in Section 5.9).

The epoch folding consists in folding the data modulo a trial period and then grouping the ob-

servations according to phase, in order to obtain a high signal-to-noise profile. Theχ2
statistics

is then used to test the high signal-to-noise profile for uniformity. This statistic is χ2
n−1 dis-

tributed, where n is the number of phase bins. By varying the trial period we can build a χ2

vs period diagram and find out the one that gives the maximum χ2
(that is, the rejection of the

uniformityhypothesis). Because theχ2
distribution resembles a triangulardistribution (seeFig-

ure 5.13), it can be oftenwell be fit by a Gaussian function, themean of whichmay be considered

the “best” coherent period P present in the data. The FWHM of the χ2
distribution should be of

the order of∼ P 2/T , where T is the total elapsed time of the observation.
Of course this method works if there are not intrinsic period variations, like the one due to or-

bitalmotions. In this case it is necessary to performa time transformation thatmakes the signal

coherent. This transformation is called a timing model.The timing model predicts a model pro-

file, or template, that is correlated to the average profile so that a phase offset can be determined.
When multiplied by the instantaneous pulse period, that phase yields a time offset that can be

added to a high-precision reference point on the profile (for example, the edge of the profile)

to create the time-of-arrival or TOA, as shown in Figure 5.14. The general procedure to derive

information on the source from the measured TOAs is depicted in Figure 5.15.

The TOA of the pulse number n is, by definition,

tn = t0 + nP (5.45)
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Figure 5.13: Pulse period of the X–ray binary pulsar GX 301–2 obtained by means of the epoch

folding technique

where t0 is a reference time (usually the start of the observation). When including intrinsic pe-
riod variations we can perform a Taylor expansion in P and write down

tn = t0 + nP +
1

2
n2 PṖ +

1

6
n3 P 2P̈ + · · · (5.46)

Equation (5.46) can be inverted and expressed in terms of the pulse phase φ at time (t− t0)

φ = φ0 + f0(t− t0) +
1

2
ḟ(t− t0)

2 +
1

6
f̈(t− t0)

3 + · · · (5.47)

where f0 = 1/P and f is the frequency. The precision with which a TOA can be determined is

approximately equal to the duration of a sharp pulse feature (e.g., the leading edge) divided by

the signal-to-noise ratio of the averageprofile. It is usually expressed in termsof thewidthof the

pulse featuresWf in units of the periodP , the pulse periodP , and the signal-to-noise ratio SNR
such that σTOA ∝ WfP/SNR. Therefore strong, fast pulsars with narrow pulse profiles provide

the best arrival times.

Before proceeding, it is better to eliminate the very first cause of period variations: the motion

of the Earth and/or of the spacecraft. This is done by referencing the TOAs to a nearly inertial

reference frame: the Solar System barycenter (see Figure 5.16).

The variation of the TOAs due to the orbital motion of the pulsar in the binary system can be

written as an addition term in Equation (5.46) of the form
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Figure 5.16: The time of arrivals of pulses from celestial objects are referenced to the nearly iner-

tial reference frame of the Solar System barycenter

· · ·+ ax sin i

c
F (e, ω, τ, θ) (5.48)

where ax sin i is the projected semi-major axis of the pulsating star orbiting with an inclination
angle i in the binary system. The function F (e, ω, τ, θ) represents the eccentric orbit of the pul-
sar around the center of mass of the binary system, where e is the eccentricity, ω the longitude
of the periastron, τ the time of periastron passage, and θ ≡ 2π(t−τ)/Porb is themean anomaly
(see Figure 5.17 for the definition of the orbital parameters). In particular, we have that

F (e, ω, τ, θ) = (1− e2)
sin(υ + ω)

1 + e cos υ
(5.49)

where the true anomaly υ can be calculated from the observed mean anomaly θ using the rela-
tions

tan
υ

2
=

√
1 + e

1− e
tan

E

2
; E − e sinE = θ (5.50)

The last relation is the so-calledKeplerEquation. Byfitting the series of TOAswith Equation (5.46)
plus (5.48), we are able to obtain the pulse period P at time t0, its time derivatives Ṗ and P̈ ,
together with the orbital parameters of the pulsar a sin i, e, ω, τ and Porb. An example of the
Doppler curve, representing the pulse delay times due to the light transit across the binary orbit,

is shown in Figure 5.18 for the X–ray binary pulsar Hercules X–1.

5.10.1 Determination of Neutron StarMasses
X–ray binary pulsars are an important laboratory formeasurements of astrophysical quantities.

One of themost important is the determination of themass of the neutron star orbiting its com-

panion. From the orbital parameters determined in the previous section, the mass function can
be expressed as

f(M) =
4π2(ax sin i)

3

GP 2
orb

= 1.1× 10−3

(
ax sin i

1 lt-s

)3(
Porb
1 d

)−2

M⊙ (5.51)
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Figure 5.17: In this diagram, the orbital plane (yellow) intersects a reference plane (gray). The

intersection is called the line of nodes, as it connects the center of mass with the ascending and

descending nodes
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Figure 5.18: Delays of the TOA in Her X–1 due to its orbital motion and theoretical sine curve

for the 35 day orbital period. The residuals refer to different orbital parameters solutions. From

Staubert et al. 2009
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whereG is the gravitational constant. The ratio of the neutron star massMx to that of the com-

panion starMc is obtained as

q ≡ Mx

Mc

=
Kc Porb

√
1− e2

2πax sin i

= 4.6× 10−2
√
1− e2

(
Kc

1 Km s
−1

)(
Porb
1 d

)(
ax sin i

1 lt-s

)−1

whereKc is the semi-amplitudeof theDoppler velocity curveof the companion star asmeasured

from optical observations.

Because in the Doppler fitting we are able to determine only the product ax sin i, we need an
independent estimate of the inclination angle i. This can be obtained if the source shows X–ray

eclipses. Indeed, the average radius of the companion starRc is related to the eclipse half-angle

Θc as

Rc = a
(
cos2 i+ sin2 i sin2Θc

)1/2
(5.52)

where a = ax + ac is the separation of the centers of mass of the two stars in the binary system.
Putting the things together, we can estimate the inclination angle in terms of the critical Roche-

lobe radiusRL as

sin i =

[
1− β2

(
RL

a

)2
]1/2

cosΘc

(5.53)

whereβ ≡ Rc/RL. With all this information it is possible to resolve the binary systemandderive

an estimate of the mass of the neutron star. All measured masses are consistent at 4σ with a
maximummass of 1.5–1.65M⊙.
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Appendix A
Examples Shown at the Blackboard

2.1 Calculation of Fourier Coefficients—Page 15

Constant Function

t

f(t)

−T
2

+T
2

f(t) = 1 for − T/2 ≤ t ≤ +T/2

From the definitions of the Fourier coefficientsAk (2.8) andA0 (2.9) we have

Ak =
2

T

∫ +T/2

−T/2

f(t) cosωkt dt A0 =
1

T

∫ +T/2

−T/2

f(t) dt

=
2

T

∫ +T/2

−T/2

cosωkt dt =
1

T

∫ +T/2

−T/2

dt

= 0 for k ̸= 0 = 1

From the definition of the Fourier coefficientsBk (2.10) we have
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Bk =
2

T

∫ +T/2

−T/2

f(t) sinωkt dt

=
2

T

∫ +T/2

−T/2

sinωkt dt

= 0 for all k

Triangular Function

t

f(t)

−T
2

+T
2

f(t) =


1 +

2t

T
for − T/2 ≤ t ≤ 0

1− 2t

T
for 0 ≤ t ≤ +T/2

From the definition of the Fourier coefficientA0 (2.9) we have

A0 =
1

T

∫ +T/2

−T/2

f(t) dt

=
1

T

∫ 0

−T/2

(
1 +

2t

T

)
dt+

1

T

∫ +T/2

0

(
1− 2t

T

)
dt

=
2

T

∫ +T/2

0

(
1− 2t

T

)
dt

=
2

T

[
t− t2

T

]T/2
0

=
2

T

[
T

2
− T 2

4T

]
= 1− 1

2

=
1

2

From the definition of the Fourier coefficientAk (2.8) we have
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Ak =
2

T

[∫ 0

−T/2

(
1 +

2t

T

)
cos

(
2πkt

T

)
dt+

∫ +T/2

0

(
1− 2t

T

)
cos

(
2πkt

T

)
dt

]

=
2

T

∫ 0

−T/2

cos

(
2πkt

T

)
dt+

2

T

∫ +T/2

0

cos

(
2πkt

T

)
dt︸ ︷︷ ︸

=0

+

4

T 2

∫ 0

−T/2

t cos

(
2πkt

T

)
dt− 4

T 2

∫ +T/2

0

t cos

(
2πkt

T

)
dt

= − 8

T 2

∫ +T/2

0

t cos

(
2πkt

T

)
dt

The last integral can be solved by parts:∫
x cos ax dx =

x

a
sin ax+

1

a2
cos ax

Therefore we finally have

Ak =
2(1− cos πk)

π2k2

Remember thatBk = 0 because f(t) is an even function. We can rewrite theAk coefficients in

the form

Ak =



1

2
for k = 0

4

π2k2
for k odd

0 for k even, k ̸= 0

In formula, we have

f(t) =
1

2
+

4

π2

(
cosωt+

1

9
cos 3ωt+

1

25
cos 5ωt+ · · ·

)
This is the function plotted in Figure 2.2 at page 16.
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2.2 Shifting rules—Page 21

Triangular functionwith average equal to zero

t

f(t)

−T
2

+T
2

f(t) =


1

2
+

2t

T
for − T/2 ≤ t ≤ 0

1

2
− 2t

T
for 0 ≤ t ≤ +T/2

This function is obtained by subtracting 1/2 from the “normal” triangular function described in

theprevious example.By applying the linearity theorem (2.19), its Fourier coefficientsAk remain

the same, while the coefficientA0 becomes zero.Therefore we have

f(t) =
4

π2

(
cosωt+

1

9
cos 3ωt+

1

25
cos 5ωt+ · · ·

)

Quarter period shifted triangular function
Now take the previous triangular function (with average equal to zero) and shift it to the right

by a = T/4, that is

t

f(t)

−T
2

+T
2

fnew = fold(t− T/4)

So the new coefficients can be calculated from the first shifting rule (2.20)

Cnew

k = Cold

k e−iωka
a=T/4
= Cold

k e−iπk/2

=
2

π2k2

(
cos

πk

2
− i sin

πk

2

)
= − 2i

π2k2
(−1)(k−1)/2 k odd
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BecauseCnew

−k = −Cnew

k it follows thatAk = 0. Using the identity iBk = C−k − Ck we have

Bk =
4

π2k2
(−1)(k−1)/2 k odd

Half period shifted triangular function

t

f(t)

−T
2

+T
2

fnew = fold(t− T/2)

Again, by applying the first shifting rule (2.20) with a = T/2we have

Cnew

k = Cold

k e−iωka
a=T/2
= Cold

k e−iπk

=
2

π2k2
(cos πk − i sinπk)

= − 2

π2k2
k odd

So we have only changed the sign (indeed, the function is now upside-down).
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2.3 Second Shifting Rule—Page 22

Constant function
f(t) = 1 for − T/2 ≤ t ≤ +T/2

In this case we already know that Ak = δk,0, or A0 = 1, and all the other Ak and Bk are null.

Now, let us multiply the function f(t) by cosωt, that is a = 1. From the second shifting rule

(2.21) we have

Anew

k = δk−1,0 =⇒ A1 = 1 (all others are zero)

By using theCk coefficients we have

C1 =
1

2
C−1 =

1

2

So,we have shifted the coefficient by a = 1 and gone halves.This example demonstrates that the

frequency ω = 0 is as good as any other function. If we know, for example, the Fourier series of
a function f(t) and consequently the solution for the integrals of the form∫ +T/2

−T/2

f(t) e−iωkt dt

thenwehave already solved, bymeans of the second shifting rule, all integrals forf(t)multiplied
by sinωt or cosωt: it is sufficient to combine phase factor ei2πat/T with phase factor e−iωkt.

Triangular functionmultiplied by cosine
Our “standard” triangular function

f(t) =


1 +

2t

T
for − T/2 ≤ t ≤ 0

1− 2t

T
for 0 ≤ t ≤ +T/2

will be nowmultiplied by cos(πt/T ), i.e. we shift the coefficientsCk by a = 1/2. The new func-

tion is still even, and therefore we have only to compute theAk because theBk are null:

Anew

k =
Aold

k+a + Aold

k−a

2

We have already computed theAold

k :

Aold

k =
2(1− cosπk)

π2k2

therefore we have
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Anew

k =
1

2

[
2(1− cosπ(k + 1/2))

π2(k + 1/2)2
+

2(1− cos π(k − 1/2))

π2(k − 1/2)2

]
=

1− cos πk cos(π/2) + sin πk sin(π/2)

π2(k + 1/2)2
+

1− cos πk cos(π/2)− sinπk sin(π/2)

π2(k − 1/2)2

=
1

π2(k + 1/2)2
+

1

π2(k − 1/2)2

Anew

0 =
Aold

1/2

2
=

2(1− cos(π/2))

2π2(1/2)2
=

4

π2

The new coefficients are therefore

A0 =
4

π2

A1 =
1

π2

(
1

(3/2)2
+

1

(1/2)2

)
=

4

π2

(
1

9
+

1

1

)
=

4

π2

10

9

A2 =
1

π2

(
1

(5/2)2
+

1

(3/2)2

)
=

4

π2

(
1

25
+

1

9

)
=

4

π2

34

225

A3 =
1

π2

(
1

(7/2)2
+

1

(5/2)2

)
=

4

π2

(
1

49
+

1

25

)
=

4

π2

74

1225

A comparison of these coefficients with the one without the cos(πt/T ) weighting shows what
we have done

w/oWeight withWeight

A0
1

2

4

π2

A1
4

π2

4

π2

10

9

A2 0
4

π2

34

225

A3
4

π2

1

9

4

π2

74

1225

In Figure A.1we show the triangular function, theweighting cosine function, and their product.

We canmake the following observations:

❏ The averageA0 got somewhat smaller, as the rising and falling flanks were weighted with

the cosine, which, except for t = 0, is less than 1.
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FigureA.1:The triangular function (left);Theweighting function cos(πt/T ) (center);Theirproduct

(right).

❏ We raised coefficientA1 a bit, but lowered all following odd coefficients a bit, too. This is

evident straight away, if we convert:

1

(2k + 1)2
+

1

(2k − 1)2
<

1

k2
=⇒ 8k4 − 10k2 + 1 > 0

This is not valid for k = 1, yet all bigger k.

❏ Nowwe have been landed with even coefficients, that were null before.

We now have twice as many terms in the series as before, though they go down at an increased

rate when k increases. The multiplication by cos(πt/T ) caused the kink at t = 0 to turn into a
muchmorepointed “spike”.This shouldactuallymake for aworseningof convergenceor a slower

rate of decrease of the coefficients.We have, however, rounded the kink at the interval boundary

±T/2, whichnaturally helps, butwe couldnot reasonably have predictedwhat exactlywas going
to happen.
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2.4 Approximating the triangular function—Page 24
The triangular function

f(t) =


1 +

2t

T
for − T/2 ≤ t ≤ 0

1− 2t

T
for 0 ≤ t ≤ +T/2

has the mean squared “signal”:

1

T

∫ +T/2

−T/2

f 2(t) dt =
2

T

∫ +T/2

0

f 2(t) dt =
2

T

∫ +T/2

0

(
1 +

2t

T

)2

dt =
1

3

Themost coarse approximation is

S0 =
1

2
=⇒ δ20 =

1

3
− 1

4
=

1

12
= 0.0833 . . .

The next approximation results in

S1 =
1

2
+

4

π2
cosωt =⇒ δ21 =

1

3
− 1

4
− 1

2

(
4

π2

)2

= 0.0012 . . .

For δ23 we get 0.0001915.. . , the approximation of the partial sum to the “triangle” quickly gets

better and better.
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Figure A.2:The bilateral exponential function (left) and its Fourier transform (right)

2.5 Fourier Transformation of Relevant Functions—Page 28

Thebilateral exponential function

f(t) = e−|t|/τ

Its Fourier transform is

F (ω) =

∫ +∞

−∞
e−|t|/τ e−iωt dt = 2

∫ +∞

0

e−t/τ cosωt dt =
2τ

1 + ω2τ 2

As f(t) is even, the imaginary part of its Fourier transform is null. The Fourier transform of the

bilateral exponential function is a Lorentzian. Both functions are shown in Figure A.2.

Unilateral exponential function

f(t) =

{
e−λt

for t ≥ 0
0 else

Its Fourier transform is
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F (ω) =

∫ +∞

0

e−λt e−iωt dt

=

∣∣∣∣ e−(λ+iω)t

−(λ+ iω)

∣∣∣∣+∞

0

=
1

λ+ iω

=
λ

λ2 + ω2
− i

ω

λ2 + ω2

F (ω) is complex, as f(t) is neither even nor odd. We now can write the real and the imaginary
parts separately.The real part has a Lorentzian shapewe are familiarwith by now, and the imag-

inary part has a dispersion shape.

Please note that |F (ω)| is no Lorentzian! If we want to “stick” to this property, we better repre-
sent the square of the magnitude: |F (ω)|2 = 1/(λ2 + ω2), that is a Lorentzian. This represen-

tation is often also called the power representation: |F (ω)|2 = (real part)
2 + (imaginary part)

2
.

The phase goes to 0 at the maximum of |F (ω)|, i.e. when “in resonance”.
Warning: The representation of the magnitude as well as of the squared magnitude does away

with the linearity of the Fourier transformation!

Finally, let us try out the inverse transformation and find out how we return to the “unilateral”

exponential function (the Fourier transform did not look all that “unilateral”!):

f(t) =
1

2π

∫ +∞

−∞

λ− iω

λ2 + ω2
e+iωt dω

=
1

2π

{
2λ

∫ +∞

0

cosωt

λ2 + ω2
dω + 2

∫ +∞

0

ω sinωt

λ2 + ω2
dω

}
=

1

π

{π
2
e−|λt| ± π

2
e−|λt|

}
where

+ for t ≥ 0
− else

is valid

=

{
e−λt

for t ≥ 0
0 else
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2.6 Convolution—Page 34

Gaussian frequency distribution

Let us assume we have f(t) = cosω0t, and the frequency ω0 is not precisely defined, but is

Gaussian distributed:

P (ω) =
1

σ
√
2π

e−
1
2

ω2

σ2

What we are really measuring is

f̄(t) =

∫ +∞

−∞

1

σ
√
2π

e−
1
2

ω2

σ2 cos(ω − ω0)t dω (A.1)

i.e. a convolution integral inω0. Instead of calculating this integral directly, we use the inverse of

theConvolutionTheorem (2.55), thus savingwork and gaining higher enlightenment. Butwatch

it!We have to handle the variables carefully.The time t in (A.1) has nothing to dowith the Fourier
transformation we need in (2.55). And the same is true for the integration variable ω.Therefore,

we rather use t0 and ω0 for the variable pairs in (2.55). We identify:

F (ω0) =
1

σ
√
2π

e−
1
2

ω2
0

σ2

1

2π
G(ω0) = cosω0t

The inverse Fourier transform of F (ω0) andG(ω0) are

f(t0) =
1

2π
e−

1
2
σ2t20

g(t0) = 2π

[
δ(t0 − t)

2
+

δ(t0 + t)

2

]
Finally we get:

h(t0) = e−
1
2
σ2t20

[
δ(t0 − t)

2
+

δ(t0 + t)

2

]
Now the only thing left is to Fourier transform h(t0):

f̄(t) ≡ H(ω0) =

∫ +∞

−∞
e−

1
2
σ2t20

[
δ(t0 − t)

2
+

δ(t0 + t)

2

]
e−iω0t0 dt0

= e−
1
2
σ2t2 cosω0t
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Now, this was more work than we had originally thought it would be. But look at what we have

gained in insight!

Thismeans: the convolution of a Gaussian distribution in the frequency domain results in expo-

nential “damping” of the cosine term,where thedampinghappens to be theFourier transformof

the frequency distribution.This, of course, is due to the fact that we have chosen to use a cosine

function (i.e. a basis function) for f(t).P (ω)makes sure that oscillations forω ̸= ω0 are slightly

shiftedwith respect to each other, andwillmore andmore superimpose each other destructively

in the long run, averaging out to 0.

Lorentzian frequency distribution
If we convolute our signal f(t) = cosω0twith a Lorentzian distribution

P (ω) =
σ

π

1

ω2 + σ2

then, by following what we have done previously with the Gaussian, we have

f̄(t) =

∫ +∞

−∞

σ

π

1

ω2 + σ2
cos(ω − ω0)t dω

h(t0) = FT
−1(f̄(t)) = e−σt0

[
δ(t0 − t)

2
+

δ(t0 + t)

2

]
f̄(t) = e−σt0 cosω0t

This is a damped wave.

Gaussian convolutedwith a Gaussian
We perform a convolution of a Gaussian with σ1 with another Gaussian with σ2. As the Fourier

transforms are Gaussians again — yet with σ2
1 and σ2

2 in the numerator of the exponent — it’s

immediately obvious that σ2
total

= σ2
1 + σ2

2. Therefore, we get another Gaussian with geometric

addition of the widths σ1 and σ2.
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3.1 Discrete Fourier Transformation—Page 56

Constant functionwithN = 4

fk = 1 for k = 0, 1, 2, 3

For the continuous Fourier transformation we expect a δ-function with the frequency ω = 0.
The discrete Fourier transformation therefore will only result in F0 ̸= 0. Indeed, by using (3.11)
— or even a lot smarter using (3.8):

F0 =
1

4
4 = 1

F1 = 0

F2 = 0

F3 = 0

As {fk} is an even series, {Fj} contains no imaginary part.

Cosine functionwithN = 4

f0 = 1

f1 = 0

f2 = −1

f3 = 0

We get, using (3.11) andW4 = i

F0 = 0 (this is the average)

F1 =
1

4
(1 + (−1)(−1)) =

1

2

F2 =
1

4
(1 + (−1)(1)) = 0

F3 =
1

4
(1 + (−1)(−1)) =

1

2

Sine functionwithN = 4
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f0 = 0

f1 = 1

f2 = 0

f3 = −1

We get, using (3.11) andW4 = i

F0 = 0 (this is the average)

F1 =
1

4
(−i+ (−1)(i)) = − i

2

F2 =
1

4
(1(−1) + (−1)(−1)) = 0

F3 =
1

4
((1)(i) + (−1)(−i)) =

i

2
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Discrete Fourier Transform: Shifting Rules

3.2 Shifted cosinewithN = 2—Page 57
First, let us compute the DFT for the cosine function:

{fk} = {0, 1} or

fk =
1

2
(1− cosπk) k = 0, 1

W2 = eiπ = −1

F0 =
1

2
(0 + 1) =

1

2

F1 =
1

2
(0 + 1(−1)) = −1

2

{Fj} =

{
1

2
,−1

2

}

Nowwe shift the input by n = 1:

{f shiftedk } = {1, 0} or

fk =
1

2
(1 + cos πk) k = 0, 1

{F shifted

j } =

{
1

2
W−1×0

2 ,
1

2
W−1×1

2

}
=

{
1

2
,
1

2

}

3.3 Modulated cosinewithN = 2—Page 58
We want to modulate the input withW−nk

N , with n = 1. From its definitionW−k
2 = (−1)−k

,

therefore

{f shiftedk } = {0,−1} or

fk =
1

2
(−1 + cos πk) k = 0, 1

{F shifted

j } = {Fj−1} =

{
−1

2
,
1

2

}
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3.4 Nyquist FrequencywithN = 8—Page 61

{fk} = {1, 0, 1, 0, 1, 0, 1, 0}

{gk} = {4, 2, 0, 0, 0, 0, 0, 2}

The “resolution function” {gk} is padded toN = 8with zeros and normalized to
∑7

k=0 = 8.The

convolution of {fk}with {gk} results in:

{hk} =

{
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

}
meaning that everything is “flattened”, because the resolution function (here triangular shaped)

has a full half-width of 2∆t and consequently does not allow the recording of oscillations with
the period∆t. The Fourier transform therefore isHk = 1/δk,0. Using the convolution theorem
(3.1) we would get

{Fj} =

{
1

2
, 0, 0, 0,

1

2
, 0, 0, 0

}
The result is easy to understand: the average is 1/2, at theNyquist frequencywe have 1/2, all the
other elements are zero.The Fourier transform of {gk} is

G0 = 1 G1 =
1

2
+

√
2

4
G2 =

1

2
G3 =

1

2
−

√
2

4

G4 = 0 G5 =
1

2
−

√
2

4
G6 =

1

2
G7 =

1

2
+

√
2

4

For the product we getHj = FjGj = 1/2, 0, 0, 0, 0, 0, 0, 0, like we should for the Fourier trans-
form. If we had taken the Convolution Theorem seriously right from the beginning, then the

calculation ofG0 (average) andG4 at the Nyquist frequency would have been quite sufficient, as

all other Fj = 0.
The fact that the Fourier transform of the resolution function for the Nyquist frequency is 0,

preciselymeans that with this resolution functionwe are not able to record oscillations with the

Nyquist frequency any more. Our inputs, however, were only the frequency 0 and the Nyquist

frequency.
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3.5 The SamplingTheoremwithN = 2—Page 65

Let us star with the shifted cosine function

{fk} = {0, 1}

We expect

f(t) =
1

2
+

1

2
cosΩNyqt = cos2

ΩNyqt

2

The sampling theorem tell us

f(t) =
+∞∑

k=−∞

fk
sinΩNyq(t− k∆t)

ΩNyq(t− k∆t)

with fk = δk,even (with periodic continuation)

=
sinΩNyqt

ΩNyqt
+

∞∑
l=1

sinΩNyq(t− 2l∆t)

ΩNyq(t− 2l∆t)
+

∞∑
l=1

sinΩNyq(t+ 2l∆t)

ΩNyq(t+ 2l∆t)

with the substitution k = 2l

=
sinΩNyqt

ΩNyqt
+

∞∑
l=1

[
sin 2π( t

2∆t
− l)

2π( t
2∆t

− l)
+

sin 2π( t
2∆t

+ l)

2π( t
2∆t

+ l)

]
withΩNyq∆t = π

=
sinΩNyqt

ΩNyqt
+

1

2π

∞∑
l=1

( t
2∆t

+ l) sinΩNyqt+ ( t
2∆t

− l) sinΩNyqt

( t
2∆t

+ l)( t
2∆t

− l)

=
sinΩNyqt

ΩNyqt
+

sinΩNyqt

2π

2t

2∆t

∞∑
l=1

1(
t

2∆t

)2 − l2

=
sinΩNyqt

ΩNyqt

1 +

(
ΩNyqt

2π

)2

2
∞∑
l=1

1(
ΩNyqt

2π

)2
− l2
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=
sinΩNyqt

ΩNyqt
π
ΩNyqt

2π
cot

πΩNyqt

2π

= sinΩNyqt
1

2

cos(ΩNyqt/2)

sin(ΩNyqt/2)

= 2 sin(ΩNyqt/2) cos(ΩNyqt/2)
1

2

cos(ΩNyqt/2)

sin(ΩNyqt/2)

= cos2(ΩNyqt/2)

Please note thatwe actually need all the summation terms of k from−∞ to+∞. If we had taken

onlyK = 0 and k = 1 into consideration we would have obtained

f(t) = 1
sinΩNyqt

ΩNyqt
+ 0

sinΩNyq(t−∆t)

ΩNyq(t−∆t)
=

sinΩNyqt

ΩNyqt

whichwouldnot correspond to the input of cos2(ΩNyqt/2).We still wouldhave, as before, f(0) =
1 and f(k∆t) = 0, but for 0 < t < ∆t we would not have interpolated correctly, as sinx/x
decays slowly for large xwhile wewant to get a periodic oscillation that does not decay as input.
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3.6 Fast Fourier Transform of the Saw-tooth—Page 72

ThecaseN = 2

f0 = 0, f1 = 1

Its “normal” Fourier transform is

W2 = eiπ = −1

F0 =
1

2
(0 + 1) =

1

2

F1 =
1

2
(0 + 1×W−1

2 ) = −1

2

Its FFT is

f1,0 = 0 even part→ F1,0 = 0

f2,0 = 1 odd part→ F2,0 = 1 M = 1

From (3.47) we get

F0 =
1

2

F1,0 + F2,0 W 0
2︸︷︷︸

=1

 =
1

2

F1 =
1

2

(
F1,0 − F2,0W

0
2

)
= −1

2

This really did not save all that much work so far.

ThecaseN = 4

{fk} = {0, 1, 2, 3}
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The “normal” Fourier transform gives

W4 = ei2π/4 = eiπ/2 = i

F0 =
1

4
(0 + 1 + 2 + 3) =

3

2

F1 =
1

4
(W−1

4 + 2W−2
4 + 3W−3

4 ) =
1

4

(
1

i
+

2

−1
+

3

−i

)
= −1

2
+

i

2

F2 =
1

4
(W−2

4 + 2W−4
4 + 3W−6

4 ) =
1

4
(−1 + 2− 3) = −1

2

F3 =
1

4
(W−3

4 + 2W−6
4 + 3W−9

4 ) =
1

4

(
−1

i
− 2 +

3

i

)
= −1

2
− i

2

Using 2 subdivisions, for the first subdivision the FFT gives us

N = 4 {f1} = {0, 2} even
N = 2 {f2} = {1, 3} odd

For the second subdivision we get

f11 = 0 even ≡ F1,1,0

f12 = 2 odd ≡ F1,2,0

f21 = 1 even ≡ F2,1,0

f22 = 3 odd ≡ F2,2,0

Using (3.47) this results in (j = 0,M ′ = 1)

F1,k =


upper part︷ ︸︸ ︷

1

2
F1,1,0 +

1

2
F1,2,0,

lower part︷ ︸︸ ︷
1

2
F1,1,0 −

1

2
F1,2,0

 = {1,−1}

F2k =

{
1

2
F2,1,0 +

1

2
F2,2,0,

1

2
F2,1,0 −

1

2
F2,2,0

}
= {2,−1}

And finally, using (3.47) once again

upper part →


F0 =

1

2
(F1,0 + F2,0) =

3

2

F1 =
1

2
(F1,1 + F2,1W

−1
4 ) =

1

2

(
−1 + (−1)× 1

i

)
= −1

2
+

i

2

lower part →


F2 =

1

2
(F1,0 − F2,0) = −1

2

F3 =
1

2
(F1,1 − F2,1W

−1
4 ) =

1

2

(
−1− (−1)× 1

i

)
= −1

2
− i

2
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Appendix B
Practical Session on Timing Analysis

Manyof the following examples are taken fromacourse on timing analysis givenbyBiswajit Paul

during the first ASTROSATWorkshop. I really thank Biswajit for lettingme use hismaterial and

passing me the data files.

In the following, we will use text in typewriter font for indicating the program output, while

the user input will be in red typewriter.

B.1 First Look at a Light Curve
The Xronos package, part of the more generalHeadas software, is formed by many programs

that address specific tasks on temporal analysis (the list of all the tasks can be obtained giving

the command fhelp ftools). One of the very first steps in performing a temporal analysis is
the quick look of the data. The lcurve task plots one or more sequences of time-ordered data
(thereafter “light curve”).

orma> lcurve

lcurve 1.0 (xronos5.22)

Number of time series for this task[1] 1

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_long.lc
Series 1 file 1:cenx-3_long.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10510 19:57:03.562
No. of Rows ....... 1873744 Bin Time (s) ...... 0.1250
Right Ascension ... 1.70313293E+02 Internal time sys.. Converted to TJD
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Declination ....... -6.06232986E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10510.83129123185 (days) 19:57: 3:562 (h:m:s:ms)

Minimum Newbin Time 0.12500000 (s)
for Maximum Newbin No.. 2638849

Default Newbin Time is: 645.00587 (s) (to have 1 Intv. of 512 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[3600] 3600

Newbin Time ...... 3600.0000 (s)
Maximum Newbin No. 92

Default Newbins per Interval are: 92
(giving 1 Interval of 92 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[215] 92
Maximum of 1 Intvs. with 92 Newbins of 3600.00 (s)

Name of output file[default] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

92 analysis results per interval

Intv 1 Start 10507 0:49:27
Ser.1 Avg 3632. Chisq 0.7848E+08 Var 0.1568E+07 Newbs. 84

Min 224.6 Max 5219. expVar 1.423 Bins1873744
PLT> line step
PLT> plot
PLT> cpd cenx-3_long_lc.ps/cps
PLT> plot
PLT> quit

In the top panel of Figure B.1 we show the light curve of the XTE/PCA observation, with data
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rebinned at 3600 s (that is, each bin corresponds to one hour of data). The “hole” is due to the

eclipse of the X–ray pulsar by the optical companion.

By runningagain thelcurveprogramwithabinning timeof0.125 s (theoriginal time resolution

of the data) we can see the single pulses, as shown in the bottom panel of Figure B.1.
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Figure B.1: Light curve of the X–ray binary pulsar Cen X–3 as observed by the PCA instrument

aboardXTE.Top:data have been rebinned at 3600 s, in order to see the long-termbehavior of the

source (in this case the eclipse). Bottom: data have been rebinned at 0.125 s, in order to observe
short-term variability, like the 4.8 s pulsation.
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B.2 Finding a Periodicity by Fourier Analysis
We know that a periodic signal is seen as a sharp spike in power spectrum.Wewill compute the

Power Spectral Density (PSD) on the Cen X–3 data in order to obtain its period. To this goal we

will use the Xronos command powspec.

orma> powspec

powspec 1.0 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_pca.lc
Series 1 file 1:cenx-3_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10507 02:24:27.559
No. of Rows ....... 60000 Bin Time (s) ...... 0.1250
Right Ascension ... Internal time sys.. Literal
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No

Selected Columns: 1- Time; 3- Y-axis; 4- Y-error; 5- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10507.10031897535 (days) 2:24:27:559 (h:m:s:ms)

**** Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time 0.12500000 (s)
for Maximum Newbin No.. 60000

Default Newbin Time is: 1.0000000 (s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.0005] 0.125

Newbin Time ...... 0.12500000 (s)
Maximum Newbin No. 60000

Default Newbins per Interval are: 8192
(giving 8 Intervals of 8192 Newbins each)
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Type INDEF to accept the default value

Number of Newbins/Interval[4096] 8192
Maximum of 8 Intvs. with 8192 Newbins of 0.125000 (s)

Default intervals per frame are: 8
Type INDEF to accept the default value
Number of Intervals/Frame[16] 7
Results from up to 7 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, 0 none)[0] 0
Name of output file[pippo] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/XW] /xw

4096 analysis results per interval

Intv 1 Start 10507 0:19:27
Ser.1 Avg 1006. Chisq 0.3487E+06 Var 0.3427E+06 Newbs. 8192

Min 248.0 Max 3704. expVar 8050. Bins 8192
Power spectrum ready !
Intv 2 Start 10507 0:36:31

Ser.1 Avg 1892. Chisq 0.8259E+06 Var 0.1526E+07 Newbs. 8192
Min 416.0 Max 8544. expVar 0.1514E+05 Bins 8192

Power spectrum ready !
Intv 3 Start 10507 0:53:35

Ser.1 Avg 2701. Chisq 0.1234E+07 Var 0.3254E+07 Newbs. 8192
Min 544.0 Max 0.1116E+05expVar 0.2160E+05 Bins 8192

Power spectrum ready !
Intv 4 Start 10507 1:10:39

Ser.1 Avg 3868. Chisq 0.1730E+07 Var 0.6535E+07 Newbs. 8192
Min 672.0 Max 0.1471E+05expVar 0.3094E+05 Bins 8192

Power spectrum ready !
Intv 5 Start 10507 1:27:43

Ser.1 Avg 4722. Chisq 0.1111E+07 Var 0.8197E+07 Newbs. 5120
Min 1176. Max 0.1633E+05expVar 0.3778E+05 Bins 5120

Power spectrum ready !
Intv 6 Start 10507 1:54:23

Ser.1 Avg 4806. Chisq 0.2097E+07 Var 0.9842E+07 Newbs. 8192
Min 944.0 Max 0.1780E+05expVar 0.3845E+05 Bins 8192

Power spectrum ready !
Intv 7 Start 10507 2:11:27

Ser.1 Avg 4696. Chisq 0.1486E+07 Var 0.8946E+07 Newbs. 6240
Min 928.0 Max 0.2020E+05expVar 0.3757E+05 Bins 6240

Power spectrum ready !
PLT> r x 0.05 5
PLT> log x on
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PLT> pl
PLT> cpd cenx-3_pca_psd.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

The PSD shows clearly two sharp peaks: the first corresponds to the pulse period, while the sec-

ond corresponds to the first harmonic. In Figure B.2 we show the Cen X–3 PSD.

A Gaussian fit to the first Fourier peak gives a centroid frequency of 0.2079+0.0002
−0.0001 Hz, corre-

sponding to a pulse period of 4.8100+0.0010
−0.0005 s.The first harmonics is at 0.4159± 0.0001Hz, cor-

responding to 2.4044 ± 0.0002 s. Note that the ratio between the two frequencies is 2.0005 ±
0.0011.

Figure B.2: Power spectrum of the XTE/PCA observation of Cen X–3. The fundamental and the

first harmonic of the 4.8 s period are clearly visible.Weuseda logarithmic scale for the frequency

for cosmetic purpose.
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B.3 Finding a Periodicity by Epoch Folding
Instead of using the Fourier spectrum for obtaining the pulse period of Cen X–3, we will the so-

called epoch folding technique.With this technique we build a template with a trial pulse period
and cross-correlate this template with our light curve. Then we vary the trial pulse period until

we obtain the better match with the original data.The efsearch program performs this task.

orma> efsearch

efsearch 1.1 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_pca.lc
Series 1 file 1:cenx-3_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10507 02:24:27.559
No. of Rows ....... 60000 Bin Time (s) ...... 0.1250
Right Ascension ... Internal time sys.. Literal
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No

Selected Columns: 1- Time; 3- Y-axis; 4- Y-error; 5- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10507.10031897535 (days) 2:24:27:559 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value
Epoch format is days.

Epoch[11723.00000] 10507.00000
Period format is seconds.

Period[15.8] 4.8
Expected Cycles .. 1562.50
Default phase bins per period are: 8
Type INDEF to accept the default value

Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.30000000 (s)
Maximum Newbin No. 25000
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Default Newbins per Interval are: 25000
(giving 1 Interval of 25000 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[782811] 25000
Maximum of 1 Intvs. with 25000 Newbins of 0.300000 (s)
Default resolution is 0.1536000000E-02
Type INDEF to accept the default value

Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128
Type INDEF to accept the default value

Number of periods to search[4096] 4096
Name of output file[pippo] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/XW] /xw

4096 analysis results per interval

Period : 4.809 dP/dt : 0.000
Intv 1 Start 10507 0:19:27

Ser.1 Avg 3257. Chisq 0.7471E+07 Var 0.3719E+07 Newbs. 16
Min 1177. Max 7050. expVar 7.966 Bins 52320

PLT> cpd cenx-3_pca_efs.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.3 we see the pulse period value that gives the better match (measured by a χ2
test)

between data folded at a trial period and the original data.

Oncewe know the pulse period, we can extract the average pulse profile by folding our datawith

the best trial value.The efold program performs this task on the light curve.

orma> efold

efold 1.1 (xronos5.22)

Number of time series for this task[1] 1
Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_pca.lc
Series 1 file 1:cenx-3_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10507 02:24:27.559
No. of Rows ....... 60000 Bin Time (s) ...... 0.1250
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Figure B.3:χ2
values as a function of the trial pulse period.Themaximum in theχ2

corresponds

to the better match between the trial period and the original pulse period.

Right Ascension ... Internal time sys.. Literal
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No

Selected Columns: 1- Time; 3- Y-axis; 4- Y-error; 5- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10507.10031897535 (days) 2:24:27:559 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value
Epoch format is days.

Epoch[ 0.1050700000E+05] 10507.00000
Period format is seconds.

Period[4.8091] 4.8091
Expected Cycles .. 1559.54
Default phase bins per period are: 10
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Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.30056875 (s)
Maximum Newbin No. 24953

Default Newbins per Interval are: 24953
(giving 1 Interval of 24953 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[24953] 24953
Maximum of 1 Intvs. with 24953 Newbins of 0.300569 (s)

Default intervals per frame are: 1
Type INDEF to accept the default value
Number of Intervals/Frame[1] 1
Results from up to 1 Intvs. will be averaged in a Frame

Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/XW] /xw

16 analysis results per interval

Intv 1 Start 10507 0:19:27
Ser.1 Avg 3257. Chisq 0.7471E+07 Var 0.3719E+07 Newbs. 16

Min 1177. Max 7050. expVar 7.966 Bins 52320
Folded light curve ready

PLT> li st
PLT> pl
PLT> cpd cen_x-3_pca_efo.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.4 we show the original data folded at the best trial period.
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Figure B.4: The Cen X–3 pulse profile, obtained by folding the original data with the best trial

period.

B.4 Variability in the Pulse Period
Up to nowwehave assumed that the pulse period is constant, but this is not always true! Indeed,

manyX–ray pulsars show changes of their spin period as a function of time, and this effectmust

be taken into account when determining the best pulse period. We will study this effect on the

X–ray binary pulsar XTE J1946+274, observed by the Indian X–ray satellite IXAE. First, let us

find the pulse period by means of the efsearch program without any period derivative (as we
did in the previous example on Cen X–3).

orma> efsearch

efsearch 1.1 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] XTE_1946+274_ixae.lc
Series 1 file 1:XTE_1946+274_ixae.lc

WARNING: Defaulting to first FITS extension

Selected FITS extensions: 1 - RATE TABLE;

Source ............ Start Time (d) .... 11723 18:03:40.786
FITS Extension .... 1 - ‘ ‘ Stop Time (d) ..... 11732 16:47:25.887
No. of Rows ....... 32469 Bin Time (s) ...... 1.020
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Right Ascension ... Internal time sys.. Converted to TJD
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 11723.75255539586 (days) 18: 3:40:786 (h:m:s:ms)
Expected Stop .... 11732.69960517328 (days) 16:47:25:887 (h:m:s:ms)

Default Epoch is: 11723.00000
Type INDEF to accept the default value
Epoch format is days.

Epoch[10507.00000] 11723.00000
Period format is seconds.

Period[4.81] 15.8
Expected Cycles .. 48925.64
Default phase bins per period are: 8
Type INDEF to accept the default value

Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.98750000 (s)
Maximum Newbin No. 782811

Default Newbins per Interval are: 782811
(giving 1 Interval of 782811 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[20000] 782811
Maximum of 1 Intvs. with 782811 Newbins of 0.987500 (s)
Default resolution is 0.1614693713E-03
Type INDEF to accept the default value

Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128
Type INDEF to accept the default value

Number of periods to search[1024] 4096
Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

4096 analysis results per interval
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WARNING: Defaulting to first FITS extension
Chisq. vs. period ready

Period : 15.77 dP/dt : 0.000
Intv 1 Start 11723 18: 3:41

Ser.1 Avg 34.32 Chisq 371.3 Var 0.3849 Newbs. 16
Min 33.22 Max 35.24 expVar 0.1658E-01 Bins 32460

PLT> cpd XTE_1946+274_ixae_efs-1.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

As we can see in the top panel of Figure B.5, the result is as clean as we obtained for Cen X–3.

This is because the observation containsmany interruptions due to passages through regions of

high concentration of particles (the satellite was in a polar orbit), where the X–ray instruments

have to be switched off.

Nowwe can run again efsearch but this time we add a pulse period derivative Ṗ = 1.9× 10−9

s/s.

orma> efsearch dpdot=1.9e-9

efsearch 1.1 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] XTE_1946+274_ixae.lc
Series 1 file 1:XTE_1946+274_ixae.lc

WARNING: Defaulting to first FITS extension

Selected FITS extensions: 1 - RATE TABLE;

Source ............ Start Time (d) .... 11723 18:03:40.786
FITS Extension .... 1 - ‘ ‘ Stop Time (d) ..... 11732 16:47:25.887
No. of Rows ....... 32469 Bin Time (s) ...... 1.020
Right Ascension ... Internal time sys.. Converted to TJD
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 11723.75255539586 (days) 18: 3:40:786 (h:m:s:ms)
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FigureB.5: Pulse period search forXTE J1946+274 as observedby the IndianX–ray satellite IXAE.

The presence of many peaks is due to interruptions in the light curve. Top: search performed by
assuming a constant pulse period.Bottom: search performed by assuming a pulse period deriva-
tive of 1.9× 10−9

s/s. Note the different value of the χ2
in the two plots.
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Expected Stop .... 11732.69960517328 (days) 16:47:25:887 (h:m:s:ms)

Default Epoch is: 11723.00000
Type INDEF to accept the default value
Epoch format is days.

Epoch[11723.00000] 11723.00000
Period format is seconds.

Period[15.8] 15.8
Expected Cycles .. 48925.64
Default phase bins per period are: 8
Type INDEF to accept the default value

Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.98750000 (s)
Maximum Newbin No. 782811

Default Newbins per Interval are: 782811
(giving 1 Interval of 782811 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[782811] 782811
Maximum of 1 Intvs. with 782811 Newbins of 0.987500 (s)
Default resolution is 0.1614693713E-03
Type INDEF to accept the default value

Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128
Type INDEF to accept the default value

Number of periods to search[4096] 4096
Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

4096 analysis results per interval

WARNING: Defaulting to first FITS extension
Chisq. vs. period ready

Period : 15.77 dP/dt : 0.1900E-08
Intv 1 Start 11723 18: 3:41

Ser.1 Avg 34.32 Chisq 1259. Var 1.306 Newbs. 16
Min 32.20 Max 35.81 expVar 0.1658E-01 Bins 32460

PLT> cpd XTE_1946+274_ixae_efs-2.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q
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In the bottom panel of Figure B.5 we can see the result. By comparing the two figures we can see

that the inclusion of the period derivative greatly increased the significance of the pulse period

(note the change in the χ2
value).
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B.5 Effect of the OrbitalMotion
Because of the Doppler effect, the pulse period changes around the binary orbit. In order to

study this effect, we will determine the value of the pulse period along the orbit of Cen X–3.We

will use the efsearch program as follows:

orma> efsearch

efsearch 1.1 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_long.lc
Series 1 file 1:cenx-3_long.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10510 19:57:03.562
No. of Rows ....... 1873744 Bin Time (s) ...... 0.1250
Right Ascension ... 1.70313293E+02 Internal time sys.. Converted to TJD
Declination ....... -6.06232986E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10510.83129123185 (days) 19:57: 3:562 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value
Epoch format is days.

Epoch[10507.00000] 10507.00000
Period format is seconds.

Period[4.8] 4.81
Expected Cycles .. 68577.13
Default phase bins per period are: 8
Type INDEF to accept the default value

Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.30062500 (s)
Maximum Newbin No. 1097235
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Default Newbins per Interval are: 1097235
(giving 1 Interval of 1097235 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[25000] 20000
Maximum of 55 Intvs. with 20000 Newbins of 0.300625 (s)
Default resolution is 0.1924000000E-02
Type INDEF to accept the default value

Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128
Type INDEF to accept the default value

Number of periods to search[4096] 1024
Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

1024 analysis results per interval

Period : 4.809 dP/dt : 0.000
Intv 1 Start 10507 0:19:27

Ser.1 Avg 2811. Chisq 0.4935E+07 Var 0.2746E+07 Newbs. 16
Min 1041. Max 6049. expVar 8.901 Bins 40420

Period : 4.808 dP/dt : 0.000
Intv 2 Start 10507 1:59:40

Ser.1 Avg 4811. Chisq 0.9896E+07 Var 0.8375E+07 Newbs. 16
Min 1681. Max 0.1036E+05expVar 13.56 Bins 45412

Period : 4.808 dP/dt : 0.000
Intv 3 Start 10507 3:39:52

Ser.1 Avg 4849. Chisq 0.1039E+08 Var 0.8569E+07 Newbs. 16
Min 1700. Max 0.1064E+05expVar 13.19 Bins 47076

Period : 4.807 dP/dt : 0.000
Intv 4 Start 10507 5:20: 5

Ser.1 Avg 5051. Chisq 0.1067E+08 Var 0.9123E+07 Newbs. 16
Min 1802. Max 0.1105E+05expVar 13.73 Bins 47076

Period : 4.807 dP/dt : 0.000
Intv 5 Start 10507 7: 0:17

Ser.1 Avg 5068. Chisq 0.1069E+08 Var 0.9063E+07 Newbs. 16
Min 1819. Max 0.1090E+05expVar 13.57 Bins 47780

Period : 4.808 dP/dt : 0.000
Intv 6 Start 10507 8:40:30
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Ser.1 Avg 4920. Chisq 0.9356E+07 Var 0.8647E+07 Newbs. 16
Min 1758. Max 0.1077E+05expVar 14.79 Bins 42596

Period : 4.808 dP/dt : 0.000
Intv 7 Start 10507 10:20:42

Ser.1 Avg 4620. Chisq 0.7100E+07 Var 0.7644E+07 Newbs. 16
Min 1668. Max 0.1007E+05expVar 17.25 Bins 34276

Period : 4.809 dP/dt : 0.000
Intv 8 Start 10507 12: 0:55

Ser.1 Avg 3982. Chisq 0.5378E+07 Var 0.5737E+07 Newbs. 16
Min 1430. Max 8800. expVar 17.06 Bins 29892

Period : 4.810 dP/dt : 0.000
Intv 9 Start 10507 14:21:19

Ser.1 Avg 4611. Chisq 0.6309E+07 Var 0.7686E+07 Newbs. 16
Min 1706. Max 0.1022E+05expVar 19.48 Bins 30308

Period : 4.811 dP/dt : 0.000
Intv 10 Start 10507 16: 1:32

Ser.1 Avg 5124. Chisq 0.6912E+07 Var 0.9109E+07 Newbs. 16
Min 1940. Max 0.1117E+05expVar 21.07 Bins 31132

Period : 4.813 dP/dt : 0.000
Intv 11 Start 10507 17:43:27

Ser.1 Avg 5133. Chisq 0.6841E+07 Var 0.8625E+07 Newbs. 16
Min 2003. Max 0.1091E+05expVar 20.30 Bins 32356

Period : 4.814 dP/dt : 0.000
Intv 12 Start 10507 19:23:40

Ser.1 Avg 4877. Chisq 0.6890E+07 Var 0.8052E+07 Newbs. 16
Min 1915. Max 0.1059E+05expVar 18.70 Bins 33380

Period : 4.816 dP/dt : 0.000
Intv 13 Start 10507 21: 3:52

Ser.1 Avg 4409. Chisq 0.6427E+07 Var 0.6692E+07 Newbs. 16
Min 1680. Max 9673. expVar 16.65 Bins 33892

Period : 4.817 dP/dt : 0.000
Intv 14 Start 10507 22:44: 5

Ser.1 Avg 4307. Chisq 0.7132E+07 Var 0.6490E+07 Newbs. 16
Min 1636. Max 9452. expVar 14.56 Bins 37860

Period : 4.818 dP/dt : 0.000
Intv 15 Start 10508 0:24:17
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Ser.1 Avg 4192. Chisq 0.7590E+07 Var 0.6062E+07 Newbs. 16
Min 1592. Max 9134. expVar 12.79 Bins 41956

Period : 4.819 dP/dt : 0.000
Intv 16 Start 10508 2: 4:30

Ser.1 Avg 4115. Chisq 0.8618E+07 Var 0.5896E+07 Newbs. 16
Min 1570. Max 8947. expVar 10.95 Bins 48100

Period : 4.820 dP/dt : 0.000
Intv 17 Start 10508 3:44:42

Ser.1 Avg 3756. Chisq 0.7745E+07 Var 0.4840E+07 Newbs. 16
Min 1472. Max 8092. expVar 9.998 Bins 48100

Period : 4.820 dP/dt : 0.000
Intv 18 Start 10508 5:24:55

Ser.1 Avg 3931. Chisq 0.8241E+07 Var 0.5450E+07 Newbs. 16
Min 1464. Max 8571. expVar 10.58 Bins 47572

Period : 4.821 dP/dt : 0.000
Intv 19 Start 10508 7: 5: 7

Ser.1 Avg 3773. Chisq 0.7686E+07 Var 0.4822E+07 Newbs. 16
Min 1428. Max 8143. expVar 10.04 Bins 48100

Period : 4.821 dP/dt : 0.000
Intv 20 Start 10508 8:45:20

Ser.1 Avg 2619. Chisq 0.3781E+07 Var 0.2059E+07 Newbs. 16
Min 1077. Max 5396. expVar 8.707 Bins 38500

Period : 4.820 dP/dt : 0.000
Intv 21 Start 10508 10:25:32

Ser.1 Avg 2648. Chisq 0.3125E+07 Var 0.2137E+07 Newbs. 16
Min 1059. Max 5541. expVar 10.94 Bins 31000

Period : 4.820 dP/dt : 0.000
Intv 22 Start 10508 12:40:15

Ser.1 Avg 3702. Chisq 0.4285E+07 Var 0.4416E+07 Newbs. 16
Min 1404. Max 7808. expVar 16.48 Bins 28772

Period : 4.819 dP/dt : 0.000
Intv 23 Start 10508 14:20:28

Ser.1 Avg 1814. Chisq 0.2068E+07 Var 0.9796E+06 Newbs. 16
Min 760.4 Max 3752. expVar 7.583 Bins 30620

Period : 4.817 dP/dt : 0.000
Intv 24 Start 10508 16: 1:19
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Ser.1 Avg 240.9 Chisq 55.50 Var 3.350 Newbs. 16
Min 237.1 Max 243.8 expVar 0.9713 Bins 31744

Period : 4.810 dP/dt : 0.000
Intv 25 Start 10509 1:22:23

Ser.1 Avg 1160. Chisq 0.1813E+07 Var 0.3916E+06 Newbs. 16
Min 505.8 Max 2385. expVar 3.456 Bins 42980

Period : 4.809 dP/dt : 0.000
Intv 26 Start 10509 3: 2:36

Ser.1 Avg 3668. Chisq 0.7675E+07 Var 0.4684E+07 Newbs. 16
Min 1318. Max 7997. expVar 9.762 Bins 48100

Period : 4.808 dP/dt : 0.000
Intv 27 Start 10509 4:42:48

Ser.1 Avg 3973. Chisq 0.8055E+07 Var 0.5320E+07 Newbs. 16
Min 1434. Max 8585. expVar 10.57 Bins 48100

Period : 4.808 dP/dt : 0.000
Intv 28 Start 10509 6:23: 1

Ser.1 Avg 4014. Chisq 0.7999E+07 Var 0.5344E+07 Newbs. 16
Min 1457. Max 8645. expVar 10.68 Bins 48100

Period : 4.807 dP/dt : 0.000
Intv 29 Start 10509 8: 3:13

Ser.1 Avg 4025. Chisq 0.6309E+07 Var 0.5385E+07 Newbs. 16
Min 1468. Max 8769. expVar 13.70 Bins 37604

Period : 4.807 dP/dt : 0.000
Intv 30 Start 10509 9:43:26

Ser.1 Avg 4091. Chisq 0.5261E+07 Var 0.5459E+07 Newbs. 16
Min 1509. Max 8775. expVar 16.65 Bins 31460

Period : 4.808 dP/dt : 0.000
Intv 31 Start 10509 11:23:38

Ser.1 Avg 3973. Chisq 0.4639E+07 Var 0.5104E+07 Newbs. 16
Min 1423. Max 8545. expVar 17.60 Bins 28900

Period : 4.808 dP/dt : 0.000
Intv 32 Start 10509 13: 3:51

Ser.1 Avg 4129. Chisq 0.4910E+07 Var 0.5469E+07 Newbs. 16
Min 1509. Max 8818. expVar 17.82 Bins 29660

Period : 4.809 dP/dt : 0.000
Intv 33 Start 10509 14:44: 3
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Ser.1 Avg 4220. Chisq 0.5057E+07 Var 0.5607E+07 Newbs. 16
Min 1536. Max 9075. expVar 17.75 Bins 30436

Period : 4.810 dP/dt : 0.000
Intv 34 Start 10509 16:24:16

Ser.1 Avg 4198. Chisq 0.5351E+07 Var 0.5550E+07 Newbs. 16
Min 1577. Max 8835. expVar 16.61 Bins 32356

Period : 4.811 dP/dt : 0.000
Intv 35 Start 10509 18: 4:28

Ser.1 Avg 4315. Chisq 0.5443E+07 Var 0.5721E+07 Newbs. 16
Min 1612. Max 9107. expVar 16.81 Bins 32868

Period : 4.813 dP/dt : 0.000
Intv 36 Start 10509 19:44:41

Ser.1 Avg 4382. Chisq 0.6085E+07 Var 0.6184E+07 Newbs. 16
Min 1717. Max 9240. expVar 16.30 Bins 34404

Period : 4.814 dP/dt : 0.000
Intv 37 Start 10509 21:24:53

Ser.1 Avg 4596. Chisq 0.6225E+07 Var 0.6308E+07 Newbs. 16
Min 1841. Max 9487. expVar 16.20 Bins 36324

Period : 4.816 dP/dt : 0.000
Intv 38 Start 10509 23: 5: 6

Ser.1 Avg 3995. Chisq 0.6098E+07 Var 0.4884E+07 Newbs. 16
Min 1610. Max 8286. expVar 12.81 Bins 39908

Period : 4.817 dP/dt : 0.000
Intv 39 Start 10510 0:45:18

Ser.1 Avg 3683. Chisq 0.6300E+07 Var 0.4216E+07 Newbs. 16
Min 1466. Max 7639. expVar 10.71 Bins 44004

Period : 4.818 dP/dt : 0.000
Intv 40 Start 10510 2:25:31

Ser.1 Avg 3717. Chisq 0.7145E+07 Var 0.4417E+07 Newbs. 16
Min 1417. Max 7825. expVar 9.892 Bins 48100

Period : 4.819 dP/dt : 0.000
Intv 41 Start 10510 4: 5:43

Ser.1 Avg 3644. Chisq 0.6942E+07 Var 0.4205E+07 Newbs. 16
Min 1364. Max 7627. expVar 9.697 Bins 48100

Period : 4.820 dP/dt : 0.000
Intv 42 Start 10510 5:45:56
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Ser.1 Avg 3472. Chisq 0.5900E+07 Var 0.3822E+07 Newbs. 16
Min 1296. Max 7251. expVar 10.36 Bins 42892

Period : 4.820 dP/dt : 0.000
Intv 43 Start 10510 7:26: 8

Ser.1 Avg 3017. Chisq 0.4791E+07 Var 0.2924E+07 Newbs. 16
Min 1113. Max 6372. expVar 9.765 Bins 39544

Period : 4.821 dP/dt : 0.000
Intv 44 Start 10510 9:17:19

Ser.1 Avg 2673. Chisq 0.3327E+07 Var 0.2242E+07 Newbs. 16
Min 972.4 Max 5550. expVar 10.78 Bins 31744

Period : 4.821 dP/dt : 0.000
Intv 45 Start 10510 10:59:27

Ser.1 Avg 2861. Chisq 0.3122E+07 Var 0.2491E+07 Newbs. 16
Min 1073. Max 5992. expVar 12.77 Bins 28672

Period : 4.820 dP/dt : 0.000
Intv 46 Start 10510 12:42:23

Ser.1 Avg 2002. Chisq 0.2048E+07 Var 0.1098E+07 Newbs. 16
Min 847.6 Max 4080. expVar 8.595 Bins 29796

Period : 4.820 dP/dt : 0.000
Intv 47 Start 10510 14:22:36

Ser.1 Avg 2572. Chisq 0.2832E+07 Var 0.1904E+07 Newbs. 16
Min 1015. Max 5323. expVar 10.75 Bins 30620

Period : 4.819 dP/dt : 0.000
Intv 48 Start 10510 16: 3:27

Ser.1 Avg 2130. Chisq 0.2453E+07 Var 0.1291E+07 Newbs. 16
Min 884.5 Max 4324. expVar 8.425 Bins 32356

Period : 4.820 dP/dt : 0.000
Intv 49 Start 10510 17:43:40

Ser.1 Avg 288.3 Chisq 3379. Var 237.0 Newbs. 16
Min 268.5 Max 315.5 expVar 1.123 Bins 32868

Period : 4.767 dP/dt : 0.000
Intv 50 Start 10510 19:23:52

Ser.1 Avg 223.4 Chisq 39.01 Var 4.374 Newbs. 16
Min 218.5 Max 226.9 expVar 1.795 Bins 15928

If we write down the value of the pulse period in each interval, and we plot them as a function

of time, we obtain the graph shown in Figure B.6.
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Figure B.6: Variation of the Cen X–3 pulse period along its orbit as due to Doppler effect.

We can reconstruct the orbitalmotionnot only by the variation of the pulse period, but also from

the variation in the pulse arrival times. If we can measure the arrival time differences then we

can obtain a very accurate determination of the orbital parameters.

We start by folding our data with the average pulse period, and we measure as the pulse phase

of a characteristic point (for example, the peak of the pulse) changes along the orbit (see Sec-

tion 5.10 for details).

orma> efold

efold 1.1 (xronos5.22)

Number of time series for this task[1] 1
Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_long.lc
Series 1 file 1:cenx-3_long.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10510 19:57:03.562
No. of Rows ....... 1873744 Bin Time (s) ...... 0.1250
Right Ascension ... 1.70313293E+02 Internal time sys.. Converted to TJD
Declination ....... -6.06232986E+01 Experiment ........ XTE PCA

M.Orlandini 169



Temporal Data Analysis A.Y. 2024/2025

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10510.83129123185 (days) 19:57: 3:562 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value
Epoch format is days.

Epoch[10507.00000] 10507.00000
Period format is seconds.

Period[4.8091] 4.8144045
Expected Cycles .. 68514.39
Default phase bins per period are: 10
Type INDEF to accept the default value

Phasebins/Period value or neg. power of 2[16] 32

Newbin Time ...... 0.15045014 (s)
Maximum Newbin No. 2192461

Default Newbins per Interval are: 2192461
(giving 1 Interval of 2192461 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[24953] 5000
Maximum of 439 Intvs. with 5000 Newbins of 0.150450 (s)

Default intervals per frame are: 439
Type INDEF to accept the default value
Number of Intervals/Frame[1] 1
Results from up to 1 Intvs. will be averaged in a Frame

Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

32 analysis results per interval

Intv 1 Start 10507 0:19:27
Ser.1 Avg 967.7 Chisq 0.1712E+06 Var 0.2198E+06 Newbs. 32

Min 469.0 Max 1866. expVar 41.14 Bins 6018
Folded light curve ready
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Figure B.7: Doppler Shift of the Cen X–3 pulse profile along its orbit.

Intv 2 Start 10507 0:31:59
Ser.1 Avg 1479. Chisq 0.3264E+06 Var 0.6433E+06 Newbs. 32

Min 628.1 Max 3046. expVar 62.94 Bins 6018
Folded light curve ready

Intv 3 Start 10507 0:44:32
Ser.1 Avg 2113. Chisq 0.5022E+06 Var 0.1413E+07 Newbs. 32

Min 821.9 Max 4416. expVar 89.96 Bins 6018
Folded light curve ready

In Figure B.7 we show two pulse profiles obtained along the orbit, and their shift due to Doppler

effect.
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B.6 Quasi Periodic Oscillations in X–ray Pulsars
A Quasi Periodic Oscillation (QPO) is revealed in a power spectrum as a broad peak (unlikely a

pure periodic signal, that is a sharp, narrow peak). We will analyze the data from a XTE/PCA

observation of the pulsar XTE J1858+038.

orma> powspec

powspec 1.0 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] XTE_J1858+034_pca.lc
Series 1 file 1:XTE_J1858+034_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ XTEJ1858+034 Start Time (d) .... 10868 10:43:11.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10868 11:37:03.562
No. of Rows ....... 25856 Bin Time (s) ...... 0.1250
Right Ascension ... 2.84730011E+02 Internal time sys.. Converted to TJD
Declination ....... 3.41000009E+00 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10868.44666160222 (days) 10:43:11:562 (h:m:s:ms)
Expected Stop .... 10868.48406900962 (days) 11:37: 3:562 (h:m:s:ms)

**** Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time 0.12500000 (s)
for Maximum Newbin No.. 25857

Default Newbin Time is: 0.50000000 (s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.125] 0.125

Newbin Time ...... 0.12500000 (s)
Maximum Newbin No. 25857

Default Newbins per Interval are: 8192
(giving 4 Intervals of 8192 Newbins each)
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Type INDEF to accept the default value

Number of Newbins/Interval[8192] 8192
Maximum of 4 Intvs. with 8192 Newbins of 0.125000 (s)

Default intervals per frame are: 4
Type INDEF to accept the default value
Number of Intervals/Frame[7] 4
Results from up to 4 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, 0 none)[0] -1.05
Results will be rebinned geometrically with a series of step 1.05

Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

4096 analysis results per intv. will be rebinned to 109

Intv 1 Start 10868 10:43:11
Ser.1 Avg 291.3 Chisq 0.1233E+05 Var 3507. Newbs. 8192

Min 112.0 Max 552.0 expVar 2330. Bins 8192
Power spectrum ready !
Intv 2 Start 10868 11: 0:15

Ser.1 Avg 299.2 Chisq 0.1224E+05 Var 3578. Newbs. 8192
Min 104.0 Max 624.0 expVar 2394. Bins 8192

Power spectrum ready !
Intv 3 Start 10868 11:17:19

Ser.1 Avg 325.0 Chisq 0.1479E+05 Var 4696. Newbs. 8192
Min 120.0 Max 688.0 expVar 2600. Bins 8192

Power spectrum ready !
Intv 4 Start 10868 11:34:23

Ser.1 Avg 356.7 Chisq 2043. Var 4554. Newbs. 1280
Min 160.0 Max 608.0 expVar 2853. Bins 1280

Interval rejected because of window(s) in series 1 !
PLT> cpd XTE_J1858+034_pca_psd.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.8 we can clearly see a QPO at 0.1 Hz, together with the peak due to the pulse period

at 221 s (4.5× 10−3
Hz).
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Figure B.8: Power spectrum of the X–ray binary pulsar XTE J1858+034. Both the peak due to the

pulse period at 4.5× 10−3
Hz and a QPO at 0.1 Hz are visible.

B.7 kHzQPO in LowMass X–ray Binaries

In order to detect QPO in the kHz range we need data at high temporal resolution.We will per-

form our analysis on a XTE/PCA observation of the Low Mass X–ray Binary 4U1728−34, that
have a time resolution of 0.125 ms.

orma> powspec

powspec 1.0 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] 4U_1728-34_pca1.lc
Series 1 file 1:4U_1728-34_pca1.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ 1728-34 Start Time (d) .... 10129 09:34:43.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10129 09:43:03.563
No. of Rows ....... 3992001 Bin Time (s) ...... 0.1250E-03
Right Ascension ... 2.62989197E+02 Internal time sys.. Converted to TJD
Declination ....... -3.38345985E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
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Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10129.39911530592 (days) 9:34:43:562 (h:m:s:ms)
Expected Stop .... 10129.40490234441 (days) 9:43: 3:563 (h:m:s:ms)

**** Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time 0.12500000E-03 (s)
for Maximum Newbin No.. 4000002

Default Newbin Time is: 0.61125000E-01(s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.125] 0.1250E-03

Newbin Time ...... 0.12500000E-03 (s)
Maximum Newbin No. 4000002

Default Newbins per Interval are: 8192
(giving 489 Intervals of 8192 Newbins each)
Type INDEF to accept the default value

Number of Newbins/Interval[8192] 1024
Maximum of 3907 Intvs. with 1024 Newbins of 0.125000E-03 (s)

Default intervals per frame are: 3907
Type INDEF to accept the default value
Number of Intervals/Frame[4] 3907
Results from up to 3907 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, 0 none)[-1.05] -1.01
Results will be rebinned geometrically with a series of step 1.01

Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

512 analysis results per intv. will be rebinned to 196

Intv 1 Start 10129 9:34:43
Ser.1 Avg 1976. Chisq 947.9 Var 0.1530E+08 Newbs. 1024

Min 0.000 Max 0.2458E+05expVar 0.1606E+08 Bins 1024
Power spectrum ready !

M.Orlandini 175



Temporal Data Analysis A.Y. 2024/2025

Intv 2 Start 10129 9:34:43
Ser.1 Avg 2120. Chisq 924.4 Var 0.1589E+08 Newbs. 1024

Min 0.000 Max 0.2458E+05expVar 0.1720E+08 Bins 1024
Power spectrum ready !
Intv 3 Start 10129 9:34:43

Ser.1 Avg 1992. Chisq 985.8 Var 0.1530E+08 Newbs. 1024
Min 0.000 Max 0.1638E+05expVar 0.1606E+08 Bins 1024

Power spectrum ready !
Intv 4 Start 10129 9:34:43

Ser.1 Avg 2016. Chisq 1002. Var 0.1612E+08 Newbs. 1024
Min 0.000 Max 0.2458E+05expVar 0.1629E+08 Bins 1024

Power spectrum ready !
Intv 3899 Start 10129 9:43: 3

Ser.1 Avg 2264. Chisq 1020. Var 0.1801E+08 Newbs. 1024
Min 0.000 Max 0.2458E+05expVar 0.1828E+08 Bins 1024

Power spectrum ready !
Intv 3900 Start 10129 9:43: 3

Ser.1 Avg 2540. Chisq 129.7 Var 0.2164E+08 Newbs. 129
Min 0.000 Max 0.2458E+05expVar 0.2081E+08 Bins 129

Interval rejected because of window(s) in series 1 !
PLT> r y 1.8 2.5
PLT> cpd 4U_1728-34_pca1_psd.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.9 we show the resulting power spectrum in which the 800 Hz QPO is clearly visible.
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Figure B.9: Power spectrum of the low-mass X–ray binary 4U1728−34 as observed by XTE/PCA.
The QPO at 800 Hz is clearly visible.

B.8 High Frequency Oscillations during Type-1 X–ray Bursts

We will search now high frequency oscillations, that sometime occur in X–ray sources. We will

analyze again high time resolution XTE/PCA data of 4U1728−34.

orma> powspec

powspec 1.0 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] 4U_1728-34_pca2.lc
Series 1 file 1:4U_1728-34_pca2.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ 1728-34 Start Time (d) .... 10129 10:01:52.562
FITS Extension .... 1 - ‘RATE ‘ Stop Time (d) ..... 10129 10:02:23.563
No. of Rows ....... 248001 Bin Time (s) ...... 0.1250E-03
Right Ascension ... 2.62989197E+02 Internal time sys.. Converted to TJD
Declination ....... -3.38345985E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
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Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window)[-] -

Expected Start ... 10129.41796947259 (days) 10: 1:52:562 (h:m:s:ms)
Expected Stop .... 10129.41832827033 (days) 10: 2:23:563 (h:m:s:ms)

**** Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time 0.12500000E-03 (s)
for Maximum Newbin No.. 248002

Default Newbin Time is: 0.38750000E-02(s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.1250E-03] 0.0005

Newbin Time ...... 0.50000000E-03 (s)
Maximum Newbin No. 62001

Default Newbins per Interval are: 8192
(giving 8 Intervals of 8192 Newbins each)
Type INDEF to accept the default value

Number of Newbins/Interval[1024] 4096
Maximum of 16 Intvs. with 4096 Newbins of 0.500000E-03 (s)

Default intervals per frame are: 16
Type INDEF to accept the default value
Number of Intervals/Frame[3907] 1
Results from up to 1 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, 0 none)[-1.01] 0
Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/xw] /xw

2048 analysis results per interval

Intv 1 Start 10129 10: 1:52
Ser.1 Avg 0.2032E+05 Chisq 4556. Var 0.4536E+08 Newbs. 4096

Min 0.000 Max 0.4710E+05expVar 0.4079E+08 Bins 16384
Power spectrum ready !
PLT> cpd 4U_1728-34_pca2_psd_1.ps/cps
PLT> pl
PLT> cpd /xw
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PLT> q

Intv 2 Start 10129 10: 1:54
Ser.1 Avg 0.1371E+05 Chisq 4218. Var 0.2844E+08 Newbs. 4096

Min 0.000 Max 0.3482E+05expVar 0.2753E+08 Bins 16384
Power spectrum ready !
PLT> cpd 4U_1728-34_pca2_psd_2.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

Intv 3 Start 10129 10: 1:56
Ser.1 Avg 9584. Chisq 4319. Var 0.2048E+08 Newbs. 4096

Min 0.000 Max 0.2867E+05expVar 0.1925E+08 Bins 16384
Power spectrum ready !
PLT> cpd 4U_1728-34_pca2_psd_3.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

Intv 15 Start 10129 10: 2:21
Ser.1 Avg 2589. Chisq 3970. Var 0.5041E+07 Newbs. 4096

Min 0.000 Max 0.1638E+05expVar 0.5199E+07 Bins 16384
Power spectrum ready !

Intv 16 Start 10129 10: 2:23
Ser.1 Avg 2591. Chisq 580.5 Var 0.5461E+07 Newbs. 561

Min 0.000 Max 0.1229E+05expVar 0.5210E+07 Bins 2241
Interval rejected because of window(s) in series 1 !

We will compute the power spectrum as a function of time, in order to see how the strength of

the oscillation varies. In Figure B.10 we show the peak of the oscillation at 360 Hz observed in

the third frame (out of a total of 16).
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Figure B.10: Four consecutive power spectra of the low-mass X–ray binary 4U1728−34 as ob-
served by XTE/PCA.The∼360 Hz oscillation is clearly visible and variable.
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