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Chapter

Classification of Physical Data

Any observed data representing a physical phenomenon can be broadly classified as being either
deterministic or nondeterministic. Deterministic data are those that can be described by an explicit
mathematical relationship. There are many physical phenomena in practice which produce data
that can be represented with reasonable accuracy by explicit mathematical relationships. For
example, the motion of a satellite in orbit about the Earth, the potential across a condenser as it
discharges through the resistor, the vibration response of an unbalanced rotating machine, or
the temperature of water as heat is applied, are all basically deterministic. However, there are
many other physical phenomena which produce data that are not deterministic. For example,
the height of waves in a confused sea, the acoustic pressure generated by air rushing through
a pipe, or the electrical output of a noise generator represent data which cannot be described
by explicit mathematical relationships. There is no way to predict an exact value at a future in-
stant of time. These data are random in character and must be described in terms of probability
statements and statistical averages rather than explicit equations.

Various special classifications of deterministic and random data will now be discussed.

1.1 Deterministic Data

Data representing deterministic phenomena can be categorized as being either periodic or non
periodic. Periodic data can be further categorized as being either sinusoidal or complex periodic.
Non periodic data can be further categorized as being either almost-periodic or transient. These
various classifications of deterministic data are schematically illustrated in Figure 1.1. Of course,
any combination of these forms may also occur. For purposes of review, each of these types of
deterministic data, along with physical examples, will be briefly discussed.

1.1.1 Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data which can be defined mathematically by a time-
varying function of the form
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Deterministic
Periodic Non Periodic
. . Complex .
Sinusoidal . p. Alrpods.t Transient
Sinusoidal Periodic

Figure 1.1: Classification of deterministic data

z(t) = X sin(wot + ¢) 1.1

where X is the amplitude, wy is the angular frequency, in units of radians per unit time', ¢ is
the initial phase angle (in radians) with respect to the time origin, and z(¢) is the instantaneous
value at time ¢. The sinusoidal time history described by (1.1) is usually referred as a sine wave.
When analyzing sinusoidal data in practice, the phase angle ¢ is often ignored.

The time interval required for one full fluctuation or cycle of sinusoidal data is called the period
T. The number of cycles per unit time is called the frequency v.

There are many example of physical phenomena which produce approximately sinusoidal data
in practice. The voltage output of an electrical alternator is one example; the vibratory motion of
an unbalanced rotating weight is another. Sinusoidal data represent one of the simplest forms
of time-varying data from the analysis viewpoint.

1.1.2 Complex Periodic Data

Complex periodic data are those type of periodic data which can be defined mathematically by
a time-varying function whose waveform exactly repeats itself at regular intervals such that

z(t) = x(t £ nT) n=123,... (1.2)

As for sinusoidal data, the time interval required for one full fluctuation is called the period T'.
The angular frequency is called the fundamental frequency w. With few exceptions in practice,
complex periodic data may be expanded into a Fourier series according to the following formula
(we will return later in greater detail on that)

'Not to be confused with the frequency v, measured in Hz. The two are related by w = 27v.

4 M.Orlandini
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[e.e]

x(t) = Z(Ak coswit + By sin wyt) (1.3)
k=0

with wy, = 27k /T and By = 0. An alternative way to express the Fourier series is

z(t) = Xo + Z X, cos(wit + ¢r) (1.4)
k=1

In other words, (1.4) says that complex periodic data consists of a static component and an infi-
nite number of sinusoidal components called harmonics, which have amplitudes X}, and phases
¢k The frequencies of the harmonic components are all integral multiples of w;.

Physical phenomena which produce complex periodic data are far more common than those
which produce simple sinusoidal data. In fact, the classification of data as being sinusoidal is
often only an approximation for data which are actually complex. For example, the voltage out-
put from an electrical alternator may actually display, under careful inspection, some small con-
tributions at higher harmonic frequencies. In other cases, intense harmonic components may
be present in periodic physical data.

1.1.3 Almost-Periodic Data

We have seen that periodic data can be generally reduced to a series of sine waves with commen-
surately related frequencies. Conversely, the data formed by summing two or more commensu-
rately related sine waves will be periodic. However, the data formed by summing two or more
sine waves with arbitrary frequencies will not be periodic.

More specifically, the sum of two or more sine waves will be periodic only when the ratios of all
possible pairs of frequencies form rational numbers. This indicates that a fundamental period
exists which will satisfy the requirements of (1.2). Hence,

x(t) = Xy sin(2t + 1) + Xosin(3t 4 o) + X3 sin(7t + ¢3)

is periodic since 2/3, 2/7 and 3/7 are rational numbers (the fundamental period is 7" = 1). On
the other hand,

2(t) = X1 sin(2t + 1) + Xosin(3t + o) + Xy sin(v/50t + @3)

is not periodic since 2/ v/50 and 3 / v/50 are not rational numbers (in this case the fundamental
period is infinitely long). The resulting time history in this case will have an “almost periodic”
character, but the requirement of (1.2) will not be satisfied for any finite value of T'.

Based on these discussions, almost periodic data are those types of non periodic data which can
be defined mathematically by a time-varying function of the form

x(t) = Z X sin(wit + @) (1.5)
k=1

M.Orlandini 5
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with w; /wy, # rational numbers in all cases. Physical phenomena producing almost periodic
data frequently occur in practice when the effects of two or more unrelated periodic phenomena
are mixed. A good example is the vibration response in a multiple engine propeller airplane
when the engines are out of synchronization.

1.1.4 Transient Non periodic Data

Transient data are defined as all non periodic data other the almost-periodic discussed above.
In other words, transient data include all data not previously discusses which can be described
by some suitable time-varying function.

Physical phenomena which produce transient data are numerous and diverse. For example, the
behavior of the temperature of water in a kettle (relative to room temperature) after the flame is
turned off.

1.2 Random Data

Data representing a random physical phenomenon cannot be described by an explicit math-
ematical relationship because each observation of the phenomenon will be unique. In other
words, any given observation will represent only one of the many possible results which might
have occurred. For example, assume the output voltage from a thermal noise generatoris recordered
as a function of time. A specific voltage time history record will be obtained. However, if a sec-
ond thermal noise generator of identical construction and assembly is operated simultaneously,
adifferentvoltage time history record would result. In fact, every thermal noise generator which
might be constructed would produce a different voltage time history record. Hence the voltage
time history for any one generator is merely one example of an infinitely large number of time
histories which might be occurred.

A single time history representing a random phenomenon is called a sample function (or a sample
record when observed over a finite time interval). The collection of all possible sample functions
which the random phenomenon might have produced is called a random process or a stochastic
process. Hence a sample record of data for a random physical phenomenon may be though of as
one physical realization of a random process.

Random processes might be categorized as being either stationary or non stationary. Stationary
random processes may be further categorized as being either ergodic or non ergodic. Non station-
ary random processes may be further categorized in terms of specific types of non stationary
properties. These various classifications of random processes are schematically illustrated in
Figure 1.2. The meaning and physical significance of these various types of random processes
will now be discussed in broad terms.

1.2.1 Stationary Random Processes

When a physical phenomenon is considered in terms of a random process, the properties of the
phenomenon can hypothetically be described at any instant of time by computing average values

6 M.Orlandini
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Random

|

. Non
Stationary Stationary
Ergodic Non Ergodic Special classllﬁcaulons
of non stationarity

Figure 1.2: Classifications of random data

over the collection of sample functions which describe the random process. For example, con-
sider the collection of sample functions (also called the ensemble) which form the random process
illustrated in Figure 1.3. The mean value (first moment) of the random process at some time ¢; can
be computed by taking the instantaneous value of each sample function of the ensemble at time
t1, summing the values, and dividing by the number of sample functions. In a similar manner,
a correlation (joint moment) between the values of the random process at two different times
(called autocorrelation function) can be computed by taking the ensemble average of the product of
instantaneous values at two times, ¢; and ¢; + 7. That is, for the random process {x(¢)}, where
the symbol { } is used to denote an ensemble of sample functions, the mean value y, (¢1) and the
autocorrelation function R, (t1,t; + 7) are given by

) 1
pe(ty) = A}l_lgo N ;xk(tl) (1.63)
1 N
Ryt t+7) = lim ~ ; 2 (ty) 2ty + 7) (1.6b)

where the final summation assumes each sample function is equally likely.

For the general case where 1, (¢1) and R, (t1,t;+7) defined in (1.6) vary as time ¢, varies, the ran-
dom process {z(t) } is said to be non stationary. For the special case where y,.(t1) and R, (¢1,t1+7)
do not vary as time ¢ varies, the random process {x(t)} is said to be weakly stationary or sta-
tionary in the wide sense. For the weakly stationary processes, the mean value is a constant
and the autocorrelation function is dependent only upon the time of displacement 7. That is,
te(t1) = pe and Ry (ty,t1 + 7) = Ry (7).

Aninfinite collection of higher order moments and joint moments of the random process {z(#) }
could also be computed to establish a complete family of probability distribution functions de-
scribing the process. For the special case where all possible moments and joint moments are

M.Orlandini 7
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xy(t)

X3(t)

Xp(t)

x,(t)

t, t,+7 t

Figure 1.3: Ensemble of sample functions forming a random process

8 M.Orlandini



AY.2024/2025 Temporal Data Analysis

time invariant, the random process {x(t)} is said to be strongly stationary or stationary in the
strict sense. For many practical applications, verification of weak stationarity will justify an as-
sumption of strong stationarity.

1.2.2 Ergodic Random Processes

The previous section discusses how the properties of a random process can be determined by
computing ensamble averages at specific instants of time. In most cases, however, it is also
possible to describe the properties of a stationary random process by computing time averages
over specific sample functions in the ensemble. For example, consider the k-th sample function
of the random process illustrated in Figure 1.3. The mean value x,.(k) and the autocorrelation
function R, (7, k) of the k-th sample function are given by

1 ("

palk) = Jim /0 ()t (1.72)
1 ("

R, (7, k) :]\}%N/O xy(t) g (t + 7)dt (1.7b)

If the random process {z(t)} is stationary, and p, (k) and R, (7, k) defined in (1.7) do not differ
when computed over different sample functions, the random process is said to be ergodic. For
ergodic random processes, the time averaged mean value and autocorrelation function (as well
as all other time-averaged properties) are equal to the corresponding ensemble averaged value.
That is, (k) = p, and R,(7,k) = R,(7). Note that only stationary random process can be
ergodic.

Ergodic random processes are clearly an important class of random processes since all processes
of ergodic random processes can be determined by performing time averages over a single sam-
ple function. Fortunately, in practice, random data representing stationary physical phenomena
are generally ergodic. It is for this reason that the properties of stationary random phenomena
can be measured properly, in most cases, from a single observed time history record.

1.2.3 Non stationary Random Processes

Non stationary random processes include all random processes which do not meet the require-
ments for stationarity defined in the previous section. Unless further restrictions are imposed,
the properties of non stationary random processes are generally time-varying functions which
can be determined only by performing instantaneous averages over the ensemble of sample
functions forming the process. In practice, it is often not feasible to obtain a sufficient num-
ber of sample records to permit the accurate measurement of properties by ensemble averag-
ing. This fact has tended to impede the development of practical techniques for measuring and
analyzing non stationary random data.

In many cases, the non stationary random data produced by actual physical phenomena can be
classified into special categories of non stationarity which simplify the measurement and anal-
ysis problem. For example, some type of random data might be described by a non stationary

M.Orlandini 9



Temporal Data Analysis AY.2024/2025

random process {y(t)} where each sample function is given by y(t) = A(t) z(t). Here z(t) is
a sample function from a stationary random process {x(¢)} and A(t) is a deterministic mul-
tiplication factor. In other words, the data might be represented by a non stationary random
process consisting of a sample functions with a common deterministic time trend. If non sta-
tionary random data fit a specific model of this type, ensemble averaging is not always needed
to describe the data. The various desired properties can sometimes be estimated from a single
record, as is true for ergodic stationary data.

10 M.Orlandini



Chapter 2
Chapter

Harmonic Analysis

Few preliminary remarks are in order: First, we will use the angular frequency w when we refer
to the frequency domain. The unit of the angular frequency is radians/second (or simpler s™1).
It is easily converted to the frequency v (unit in Hz) using the following equation:

w = 271V
Second: just let us remember the definition of even and odd functions.
Definition 2.1 (Even and odd functions). A function is said to be even if
f(=t) = f(¢) even function
while a function is said to be odd if

f(=t) =—f(t) odd function

Any function can be described in terms of a mixture of even and odd functions, by means of the
following decomposition (see Figure 2.1):

P OESC)
even - 2
R (CEYC

2.1 Fourier Series

This Section will deal with the mapping of periodic functions to a series based on the trigonomet-
ric functions sine (and odd function) and cosine (even function).

11
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4f(t) Af(t)

even odd

Af(t) Af(t) Af(t)

~Y
~Y
~Y

mixed = even + odd

Figure 2.1: Examples of even, odd and mixed functions
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-

Did you understand the Fourier series?
10:37 pm
Haven't watched yet...is it available on
Netflix?

Thank you _l

10:40 pm

2.1.1 Definition

Any periodic function f(t) can be expanded into a series of trigonometric function, the so called
Fourier series, as follows

Definition 2.2 (Fourier series).

= 2k
flt) = Z<Ak cos wyt + By, sin wyt) withwy, = %, By=0 2.1
k=0

T is the period of the function f(t). The amplitudes or Fourier coefficients A and By, are deter-
mined in such a way that the infinite series is identical with the function f(¢). Equation (2.1)
therefore tells us that any periodic function can be represented as a superposition of sine-function
and cosine-function with appropriate amplitudes — with an infinite number of terms, if need be
— yet using only precisely determined frequencies:

2w 4w 6w
7T7T’T7"'

w=20

2.1.2 Calculation of the Fourier Coefficients

Before we compute the expressions of the Fourier coefficients, we need some tools. In all follow-
ing integrals we integrate from —7/2 to +7'/2, meaning over an interval with the period 7 that
is symmetrical to ¢ = 0. We could also pick any other interval, as long as the integrand is peri-
odic with period 7" and gets integrated over a whole period. The letters n and m in the formulas
below are natural numbers 0, 1,2, . . . Let’s have a look at the following

+T/2
/ coswptdt = { 0 forn 70 2.2)
12 T forn=0
+T/2
/ sinw,tdt = 0 (2.3)
—-T/2

M.Orlandini 13
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This results from the fact that the areas on the positive half-plane and the ones on the negative
one cancel out each other, provided we integrate over a whole number of periods. Cosine integral
for n = 0 requires special treatment, as it lacks oscillations and therefore areas can’t cancel out
each other: there the integrand is 1, and the area under the horizontal line is equal to the width
of the interval 7. Furthermore, we need the following trigonometric identities:

cosacos 3 = % [cos(a — 3) + cos(a + ()]
sinasin 8 = % [cos(a — ) — cos(a + )] (2.4)
sinacos 3 = % [sin(a — B) + sin(a + )]

Using these identities we can demonstrate that the system of basis functions consisting of (sin wyt, cos wyt)
with k =0, 1,2, ... is an orthogonal system. This means that

+T/2 0 forn #m
/ COS Wyt cos wyt dt = T/2 forn=m#0 (2.5)
~T/2 T forn=m=0
/2 fsi cdt - 0 forn#m,n=0,m=0 »
/T/2 sin wy,t sin wy, = { T/2 forn—m#0 (2.6)
+T/2
/ sinwyptcoswy,tdt = 0 2.7
~T/2

Please note that our basis system is not an orthonormal system, i.e. the integrals for n = m are
not normalized to 1. What’s even worse, the special case of n = m = 01in (2.5) is a nuisance, and
will keep bugging us again and again.

Using the above orthogonality relations, we are able to calculate the Fourier coefficients straight
away. We need to multiply both sides of (2.1) by coswyt and integrate from —7'/2 to +7'/2.
Due to the orthogonality, only terms with £ = £’ will remain; the second integral will always
disappear. This gives us:

9 +T/2

A = —/ f(t) coswyt dt fork #0 (2.8)
T J 1)
1 +T/2

Ay = —/ f(t)dt (2.9)
T J 1)

Please note the prefactors 2/7 or 1/T, respectively, in (2.8) and (2.9). Equation (2.9) simply is
the average of the function f(¢). Now let’s multiply both sides of (2.1) by sin wyt and integrate
from —7'/2 to +7'/2. We now have:

14 M.Orlandini
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+T/2

Bi— 2 / F(#)sinwgtdt  forallk 2.10)
T J 7/

Equations (2.8) and (2.10) may also be interpreted like: by weighting the function f(t) with

cos wyt or sin wyt, respectively, we “pick” the spectral components from f(t), when integrating,

corresponding to the even or odd components, respectively, of the frequency wy.

Ex.2.1 Calculation of Fourier coefficients: Constant and triangular func-
tions

2.1.3 Fourier Series and Music

While listening to music, we are able to clearly distinguish the sound produced by different in-
struments. The sound coming from a flute is quite different from the sound coming from a
violin, even if they play the same note’.
In musical terms, this difference is called timbre and it was von Helmholtz, in the second half
of the XIX century, who understood that (von Helmholtz H. 1885. “On the sensations of tone as a
physiological basis for the theory of music”)

“Each vibratory motion of the air in the ear canal, corresponding to a musical sound, can al-
ways be uniquely regarded as the sum of a number of vibratory movements.”

or, in mathematical terms, the timbre can be easily explained in terms of Fourier decomposition
of the signal.

Indeed, if we apply Eq. (2.1) and extract the Fourier coefficients for various instruments we will
obtain something like shown in Figure 2.3: it is evident that the harmonic content of different
instruments is quite different.

For example, for the violin we have that the first Fourier frequencies are quite intense (and the
brilliance of the violin sound is due the fact that these harmonics peak in the region where our
earis more sensitive). On the other hand, for the clarinet (here in the chalumeau registry) the even
harmonics are quite faint, giving raise to its characteristic “hollow” sound. The typical metallic
sound of the trumpet is due to the presence of very high harmonics, beyond the 21st.

It is interesting to observe that the harmonic content is different not only for different instru-
ments playing the same note, but also for the same note played by the same instrument (the La
played by a violin on the La string (not fingered) and the La played on the Re string (fingered)),
or the same note played in different octaves. As an example, in Figure 2.4 we show the harmonic
content of all the Do’s in the piano.

!In general terms, we call pitch of a sound the “perceived” frequency of a musical note, and it is related to the
amount of Fourier frequencies we (that is, our ears) are able to distinguish.
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Original function

Oth approximation
1

2

1st approximation

1l + 4 cos ot
2 e

2nd approximation

1l + 4 (cos wt + _Lcos 3wt)
2 2 9

3rd approximation

1l + 4 (cos wt +
2 e

1 cos 3wt + 1 cos S5wt)
9 25

Figure 2.2: The triangular function and consecutive approximations by a Fourier series with

more and more terms
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30 30
20
20 20
10 10 II 19
0 0 l“‘“‘“llﬁ o
13 9 13 s 9 I 5 9 13 17 2
Fiolino mi5 (660 Hz) Cbasso sol2 (98 Hz) Chitarra fad (349 Hz)
20 30 30
20 .
15 20 o
0 10
5 H 10
o o 0 0
I 5 9 13 17 L5 9 13 17 I 4 7 1o I 5 9 13 1 o2

Clarinerto sibd (466 Hz) Oboe dod (264 Hz}  Fiawto sold (392 Hz} Trombe fad (349 Fz)

Figure 2.3: Comparison of a Fourier decomposition of a musical signal played by different instru-
ments. On the abscissa we list the Fourier frequency index k, while the Y axis shows the power,
in dB, emitted in the single harmonics (from Olson H.F., “Music, Physics and Engineering”).

15 15
10 10
5 5
0 il 0 '
1 5 9 13 17 21 25 20 33 L 5913 a7 A 25 i tE
dol (32,7 Hz) do2 (65,4 Hz)
15 20 20 20 20
10 15 15 15 15
. 10 10 10 10
5 5
0 0 1]
1 5 9 13 17 21 1 5 9 13 i 5 9 1 5 1 4
do3 (130,8 Hz) do4 (261,67 Hz) do§ (523,2 Hz) do6 do7

Figure 2.4: Comparison of Fourier decomposition of different Do’s played by a piano, from the
left to the right of the keyboard. Note that for the Dol the fundamental and the lower harmon-
ics are fainter than the higher ones, therefore the pitch is somewhat “virtual”, while the lack of
harmonics in Do6 and Do7 makes them an almost pure sound.
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:Mll M J\ ;*J\\ il N\«l
CE][ W W[ W

L

Armoniche tutte in fase Armoniche sfasate di 90°  Armoniche sfasate a caso

Figure 2.5: Effects of phase shifts among harmonics in a complex signal: Left: a square wave
obtained by summing the first 21 harmonics all in phase among each other. Central: harmonics
shifted by 7/2. Right: random shift.

Note how the lack of harmonics in the higher Do’s, like Do6 and Do7, makes them an almost
“pure sound”. Furthermore, for the Dol we can notice that the fundamental frequency and the
lower harmonics are fainter than the harmonics between the 10th and the 15th. Despite this,
our ears recognize the sound as a Dol. This phenomenon is called “virtual pitch”, and it is the
demonstration that our brain is a “Fourier analyzer”.

Our brain is therefore able to decompose an acoustic signal in its Fourier components, and is
able to perceive each of them, independently of their phase relationships. In this perspective,
the sentence that Leibniz’ wrote in a letter to Christian Goldbach on April 17, 1712 was prophetic:
“Musica est exercitium arithmetice occultum nescientis se numerare animi”.

The fact that the human brain is not able to perceive phase differences among harmonics is
very important: indeed, the timbre of an instrument would change during the emission of a
sound because of the different velocities of the harmonics along a string. To illustrate this phe-
nomenon, in Figure 2.5 we show a square wave obtained by summing the first 21 harmonics, all
in phase among each other. In the central panel we show the shape of the wave obtained by intro-
ducing a phase shift of 7/2, while in the right panel the shift is random. While the wave shapes
are completely different, if the signals are sent to a loudspeaker they are indistinguishable to the
human ear.

2.1.4 Fourier Series in Complex Notation

In (2.1) the index k starts from 0, meaning that we will rule out negative frequencies in our Fourier
series. The cosine terms didn't have a problem with negative frequencies. The sign of the cosine
argument doesn't matter anyway, so we would be able to go halves as far as the spectral intensity
at the positive frequency kw was concerned: —kw and kw would get equal parts, as shown in
Figure 2.6. As frequency w = 0 (a frequency as good as any other frequency w # 0) has no
“brother”, it will not have to go halves. A change of sign for the sine-terms arguments would
result in a change of sign for the corresponding series term. The splitting of spectral intensity
like “between brothers” (equal parts of —wy and 4wy, now will have to be like “between sisters”:
the sister for —wy, also gets 50%, but hers is minus 50%!

2Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.
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Figure 2.6: Plot of the “triangular function” Fourier frequencies: Top: Only positive frequencies;
Bottom: Positive and negative frequencies.
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Instead of using (2.1) we might as well use:

+oo
f(t) = Z (A}, cos wyt + By sin wyt) (2.11)
k=—oc0
where, of course, the following is true: A’ , = A}, B’ , = — B, The formulas for the computa-

tion of A} and By, for k > 0 are identical to (2.8) and (2.10), though the lack the extra factor 2.
Equation (2.9) for Ag stays unaffected by this. This helps us avoid to provide a special treatment
for the constant term.

Now we're set and ready for the introduction of complex notation. In the following we'll always
assume that f(¢) is a real function. Generalizing this for complex f(t) is no problem. Our most
important tool is Euler identity:

e = cosat + isin ot (2.12)

where i is the imaginary unit (i = —1). This allows us to rewrite the trigonometric functions as

1 . .
cosat = 5(6“” + e

1 (2.13)
sinat = Z(emt — et
Inserting these relations into (2.1) we obtain
> Ak —in : Ak"‘lBk —3
t) = A TRVTR iwgt kTR twit 2.14
f()o+;<2€+26 (2.14)
If we define
Coy = Ay
Ak — 1By,
Ch=—"7— (2.15)
A, +1B
C =20k 193
2
we finally get
> , 2k
f(t) = kz_: Cre™*  wy, = - (2.16)
Now C}, can be formulated in general terms as
1 +T/2 )
C) = —/ Ft)e ™ tdt  fork =0,£1,£2,... 2.17)
T J 7

Please note that there is a negative sign in the exponent. Please also note that the index % runs
from —oo to +o0o for C},, whereas it runs from O to +oo for A;, and B;,.
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2.1.5 Theorems and Rules
2.1.5.1 Linearity Theorem

Expanding a periodic function into a Fourier series is a linear operation. This means that we
may use the two Fourier pairs:

f(t) < {Cr;wr}

) (2.18)
g(t) < {Cp;wr}

to form the following combination

h(t)=ax f(t)+bx g(t) < {aCp +bC};wi} (2.19)

Thus, we may easily determine the Fourier series of a function by splitting it into items whose
Fourier series we already know.

2.1.5.2 'The Shifting Rules

Often, we want to know how the Fourier series changes if we shift the function f(¢) along the
time axis. This, for example, happens on a regular basis if we use a different interval, e.g. from 0
to T, instead of the symmetrical one from —7'/2 to +7'/2 we have used so far. In this situation,
the First Shifting Rule comes in very handy:

f(@#) < {Cr;wi}

) (2.20)
f(t—a) < {Cre ™" wi}

Proof.

new 1 e —iwgt t=t—a 1 T/ e N ,—twit’ —iwga Jp!
Y = = flt—a)e ™ dt =" — f(t") e ™kt 7R qt
T J 1) T J_(1/2)-a

_ efiwka C}zld

We integrate over a full period, that’s why shifting the limits of the interval by a does not make
any difference. The proof is trivial, the result of the shifting along the time axis not! The new
Fourier coefficient results from the old coefficient C}, by multiplying it with the phase factor
e~wra As C), generally is complex, shifting “shuffles” real and imaginary parts.

Ex. 2.2 Shifting rules: Triangular function with average equal to zero.
Quarter period shifted triangular function. Half period shifted triangular
function.
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The First Shifting Rule showed us that shifting within the time domain leads to a multiplication
by a phase factor in the frequency domain. Reversing this statement gives us the Second Shifting
Rule:

S0 G 2
ft)e 7 < {Croaiwr}

In other words, a multiplication of the function f(t) by the phase factor €277 results in fre-

quency wy now being related to “shifted” coefficient C},_, instead of the former coefficient Cj,. A
comparison between (2.21) and (2.20) demonstrates the two-sided character of the two Shifting
Rules. If a is an integer, there won't be any problem if we simply take the coefficient shifted by
a. But what if a is not an integer?

Strangely enough nothing serious will happen. Simply shifting like we did before won't work
any more, but who is to keep us from inserting (k — a) into the expression for old Cj,, whenever
k occurs.

Before we present examples, two more ways of writing down the Second Shifting Rule are in
order:

J(t) <+{Ax; By wi}

i2mat 1 ,
fHe T {5 [Akta + Ar—a + @ (Bita = Br—d)l; (2.22)

1 .
3 [Bita — Br—a + 1 (Ag—a — Agia)] éwk}

Caution! This is valid for & # 0. Note that old Ay becomes A, /2 + iB, /2. The formulas becomes
alot simpler in case f(t) is real. In this case we get:

2 t A a A —a B a B —a
f(t) cos 7;& > { bt ; b : Uax ; b ;wk} (2.23)
old A becomes A, /2 and
2wat Biia — Bi—a Apya — Al_
f(t) Sin 7;:1 o { k+a 2 k a; k+a 2 k a;CL)k-} (224)
old Ay becomes B, /2.

Ex. 2.3 Second Shifting Rule: constant function and triangular function
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2.1.5.3 Scaling Theorem

Sometimes we happen to want to scale the time axis. In this case, there is no need to re-calculate
the Fourier coefficients. From:

ft) < {Cy;wi}

2.25
we get: f(at) <> {Cy; “k (2.25)
a
Here, a must be real! For a > 1 the time axis will be stretched and, hence, the frequency axis
will be compressed. For a < 1 the opposite is true. The proof for (2.25) is easy and follows from
(2.17):

+T/2a Vot @ +T/2 o
C]r{lew — _/ fzwkt dt ' = f(t/> e lwrt /a—dt/
T/2a T —T/2 a
wold
_ C«old Wlth wnew _ Yk
a

Please note that we also have to stretch or compress the interval limits because of the require-
ment of periodicity. Here, we have tacitly assumed a > 0. For a < 0, we would only reverse the
time axis and, hence, also the frequency axis. For the special case « = —1 we have:

f(t) <{Cr;wi}

F(—t) 65{Chi —wn) (2:26)

2.1.6 Partial Sums, Parseval Equation

For practical work, infinite Fourier series have to get terminated at some stage, regardless. There-
fore, we only use a partial sum, say until we reach k., = V. This N'th partial sum then is:

N
Sy = Z(Ak cos wyt + By, sin wyt) (2.27)
k=0

Terminating the series results in the following squared error:

R = /T F() — Sy dt 2.28)

The T" below the integral symbol means integration over a full period. This definition will become
plausible in a second if we look at the discrete version:

1
5]2\7 = f Z<f] — 8j)2 (2.29)

M.Orlandini 23



Temporal Data Analysis AY.2024/2025

Please note that we divide by the length of the interval, to compensate for integrating over the
interval 7. Now we know that the following is correct for the infinite series:

oo
lim Sy = Z(Ak cos wyt + By, sin wyt) (2.30)
N—o00
k=0

provided the A, and By, happen to be the Fourier coefficients. Does this also have to be true for
the Nth partial sum? Isn’t there a chance the mean squared error would get smaller, if we used
other coefficients instead of Fourier coefficients? That’s not the case! To prove it, we'll now insert
(2.27) and (2.28) in (2.30), leave out lim_,, and get:

5 = %{/ng(t)dt—Q/Tf(t)SN(t)dH—/TSJQV(t)dt}

= %{/ng(t)dt

-2 Z(Ak’ cos wyt + By, sin wyt)
T k=0

(Ag coswyt + By sin wyt) dt

WE

0

M= 7

N
+ Z(Ak coswyt + Bysinwit) ¥ (A cosw,t + Bjsinw;t) dt}

T ;=0 §=0
1 T T
_ 2 2 2 2 2 2 2
= ?{/Tf (t)dt—QTAO—2§ k§:1(Ak+Bk)+TA0+§]€§:1(A,€+B,€)}
= l/f?(t)dt—A?—1 EN (A2 + B2 (2.31)
T Jr O aL R TR '

Here, we made use of the somewhat cumbersome orthogonality properties (2.5), (2.6) and (2.7).
As the A? and B? always are positive, the mean squared error will drop monotonically while N
increases.

Ex.2.4 Approximating the triangular function

As 0% is always positive, we finally arrive from (2.31) at the Bessel inequality

1 1
T/TfQ(t) dt > A+ ) (A7 + B}) (2.32)

k=1
For the border-line case of N — oo we get the Parseval equation:
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1 / 2 2 1 - 2 2
= [ ff(t)dt =A5+ 5 > (A, + By) (2.33)
T Jr 0 2;

Parseval equation may be interpreted as follows: 1/7 [ f*(t) dt is the mean squared “signal”
within the time domain, or — more colloquially — the information content. Fourier series don’t lose
this information content: it’s in the squared Fourier coefficients.

2.2 Continuous Fourier Transformation

Contrary to Section 2.1, here we won't limit things to periodic f(¢). The integration interval is
the entire real axis (—oo, +00). For this purpose well look at what happens at the transition
from a series-representation to an integral-representation:

+T/2

1 )
Series: Cj = —/ f(t) e ™rt dt
T J 1)
+o0o

Continuous: (TCy) = ft)e ™t dt

lim
T—o00

2.2.1 Definition

Let us define the Forward Fourier Transformation and the Inverse Fourier Transformation as follows:

Definition 2.3 (Forward Fourier transformation).

+oo
F(w) = f(t)e ™ dt (2.34)

—00

Definition 2.4 (Inverse Fourier transformation).

1 [t |
() / Fw)et™ du 2.35)

o)
Please note that in the case of the forward transformation, there is a minus sign in the exponent
(cf. (2.17)), in the case of the inverse transformation, this is a plus sign. In the case of the inverse
transformation, 1/27 is in front of the integral, contrary to the forward transformation.

The asymmetric aspect of the formulas has tempted many scientists to introduce other defini-
tions, for example to write a factor 1/ /27 for forward as well as inverse transformation. That’s
no good, as the definition of the average F'(0) = fj;o f(t) dt would be affected.

Now let us demonstrate that the inverse transformation returns us to the original function. For
the forward transformation, we often will use FT(f(¢)), and for the inverse transformation we
will use FT~!(F(w)). We will begin with the inverse transformation and insert:
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Proof.
1 +oo ) 1 +oo +00 o
ft) = o . F(w) emdw:% N dw - F(') et et gy
1 +oo oo
= 2_ f(t/) dt// ez(t—t Jw dw (236)
T ) oo -
+oo

= f@)o(t —t7) dt" = f(t)

where 0(t) is the Dirac d-function’.

2.2.2 Transformation of relevant functions
2.2.2.1 'The /-function

From (2.36), by putting f(¢) = 1 we have

FT((S(?) (2.37)

1
FT!(1) = 276 (w)

We realize the dual character of the forward and inverse transformations: a very slowly varying
function f(¢) will have a very high spectral density for very small frequencies; the spectral den-
sity will go down quickly and rapidly approaches zero. Conversely, a quickly varying function
f(t) will show spectral density over a very wide frequency range (we will discuss about this issue
in more detail in Section 2.2.6).

2.2.2.2 The Dirac comb

A Dirac comb (also called “sampling function”, see (5.9)), is an infinite sequence of Dirac 4-
functions placed at even intervals of size T":

+o0o
IIr(t) = Y 6(t —nT). (2.38)

The Fourier transform of a Dirac comb spaced with period 7" is a Dirac comb spaced with period
1/T (see Figure 2.7, fourth panel)

FIIp(t)) = %III%(w). (2.39)

3The §-function is actually a distribution. Its value is zero anywhere except when its argument is equal to zero.
In this case it is co.
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Sinusoid Delta Functions
() \ i m { __________ | & ‘ —fo +1y
Gaussian Gaussian

(b,
(©) L]
Dirac Comb Dirac Comb
T
(d «—>

Figure 2.7: Fourier transforms of relevant functions. On the right the function, on the left the
corresponding Fourier transformation. From VanderPlas 2018.

1T
— —

2.2.2.3 Asinusoid with frequency w

From the definition of the Fourier transformation we have

—+00

Using the Euler identity (2.12) we can write
eiwt + e—iwt eiwt _ 6—iwt
9 )

cos(wt) = sin(wt) = ————— (2.41)
Combining (2.40) and (2.41), along with the linearity of the Fourier transform, we obtain

21

FT (cos(wot)) = = [6(w —wo) + d(w + wo)]

|,_.N.)|+—t

FT (sin(wot)) = [0(w — wp) — §(w + wo)] (2.42)

[\
)

In other words, a sinusoidal signal with frequency wy has a Fourier transform consisting of a
weighted sum of §-functions at +wy (see Figure 2.7, first panel).
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2.2.2.4 The Gaussian function

The prefactor is chosen in such a way that the area under the function is normalized to unity.

f(t) = —=c2
o\ 2T
Its Fourier transform is
1 +o0 142 ot
Flw) = e 2.2 e ™ dt
( ) oV21 J_so
2_[" 15 tdt
= e 202 Cosw
oV2m Jo

1
= exp (—50%12)

Again, the imaginary part is null because the function is even. The Fourier transform of a Gaus-
sian results to be another Gaussian. Note that the Fourier transform is not normalized to unit
area.

f(t) has o in the exponent denominator, while F'(w) has it in the exponent numerator: the slim-
mer f(t), the wider F(w) and vice versa, as shown in Figure 2.7, second panel.

2.2.2.5 The “rectangular” function

Now let us discuss an important example: the Fourier transform of the “rectangular” normalized
function (see Section 2.3.3 for a detailed discussion)

[ 1)T for —T/2<t<4T/2
f(t)_{ 0 else

Its Fourier transform is

2 [TT/2 sinwT'/2
Flw)== coswtdt = ————— 2.43
(W) =7 /0 ST (2.43)
The imaginary part is 0, as f(t) is even. The Fourier transformation of a rectangular function,
therefore, is of the type sin x/x. Some authors use the expression sinc(z) for this case. The “c”
stands for cardinal and we will discuss about its importance in signal analysis in Section 3.4. The
functions f(¢) and F'(w) are shown in Figure 2.7, third panel.

Ex. 2.5 Fourier transformation of relevant functions: bilateral exponen-
tial, unilateral exponential
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2.2.3 Theorems and Rules
2.2.3.1 Linearity Theorem

For completeness’ sake, once again:

g(t) <G (w); (2.44)
ax f(t)+bxg(t) +rax Flw)+bx Gw)
2.2.3.2 Shifting Rules

We already know: shifting in the time domain means modulation in the frequency domain, and
a modulation in the time domain results in a shift in the frequency domain

f@t) < F(w);
f(t—a) < F(w)e ™ (2.45)
f(t) e ™ < Fw — wp)

2.2.3.3 Scaling Theorem

f(t) & F(w);
1 w (2.46)
flat) 7 F (g)

Proof. Analogously to (2.25) with the difference that here we cannot stretch or compress the in-
terval limits +oo:

1 +o00 )
Fw)™ = T flat)e ™" dt
! — ]_ oo - ]_
t'=at N —iwt'/a
= = t —dt
7/ f)e -
1 old
—F(w) with w= d
|al a

Here, we tacitly assumed a > 0. For a < 0 we would get a minus sign in the prefactor; however,
we would also have to interchange the integration limits and thus get together the factor 1/|a|.
This means: stretching (compressing) the time-axis results in the compression (stretching) of
the frequency-axis. For the special case a« = —1 we get:

(2.47)
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Therefore, turning around the time axis (“looking into the past”) results in turning around the
frequency axis.

2.2.4 Convolution, Parseval Theorem
2.2.4.1 Convolution

The convolution of a function f(t) with another function ¢(t) is defined as:

Definition 2.5 (Convolution).

“+o00

h(t) = f(€) gt =& dE= f(t) @g(t) (2.48)

—0o0

Please note that there is a minus sign in the argument of ¢(¢). The convolution is commutative,
distributive, and associative. This means

commutative: ft)®g(t)=g(t)® f(t)
distributive: f(t) ® (g(t) + h(t)) = f(t) ® g(t) + f(t) @ h(t)
associative:  f(t) ® (g(t) @ h(t)) = (f(t) ® g(t)) ® h(t)

Before going on with the mathematical demonstration of the convolution theorem, let us present
two physical examples of convolution.

A real observation of a physical phenomenon cannot lasts forever, but will be performed for a
certain amount of time. This corresponds to “convolute” a continuous signal with a rectangular
function, as shown in Figure 2.8. According to the convolution theorem, the Fourier transform
of the convolution is the point wise product of the individual Fourier transforms. This concept
will be discussed into details in the Second Part of the course.

As another example of convolution, let us take a pulse that looks like an unilateral exponential
function

et fort >0
ft) = { 0 else (2.49)

Any device that delivers pulses as a function of time, has a finite rise-time/decay-time, which for
simplicity’s sake we'll assume to be a Gaussian

1 1 ¢2
g(t) = exp (———) (2.50)

oV 2T 2 o2

That is how our device would represent a dfunction — we can't get sharper than that. The function
g(t), therefore, is the device’s resolution function, which we’ll have to use for the convolution of
all signals we want to record. An example would be the bandwidth of an oscilloscope. We then
need:
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Data: D(t)

\MM\/\MW e WM ma; ;:,:;V
10
Window: W(t) Window FT: F(W)
FT
5 —
f\v/\ /\\/L
. \/ \Z
U Convolution U Pointwise Product
[D * WI(t) = F{FID] - FIW]} F(D) - F(W)
= 0.2 0.4 0.6 0.8 -30 -20 -10 0 10 20 30
t

f

Figure 2.8: Visualization of the convolution theorem: In the right panels, the black and gray lines
represent the real and imaginary parts of the transforms, respectively. From VanderPlas 2018.

S(t) = f(t) ®g(t) 2.51)

where S(t) is the experimental, smeared signal. It's obvious that the rise at t = 0 will not be as

steep, and the peak of the exponential function will get “ironed out”. We'll have to take a closer
look:
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B +oo y 1(t—§)2)
“”‘ov%a/ ep( 2 &
oV 2T

2 o2 T 02 202

o _1ﬁ 1Y (-2 0_2 .
= exp 55 exp (== Jexp | 55
00 1 2
/ exp{——2 {5— (t— “—)} } dé 2.52)
0 20 T
_ ! ot Ll
= exp (—— Jexp | 55
+o00 12 2
[ S) e wmeee )
—(t—02/7) 20 T
Lot L U
=gexp|——)exp| o erfc 3 o

Here, erfc(x) = 1 — erf(x) is the complementary error function, where

erf(x / (2.53)
VT

Figure 2.9 shows the result of the convolution of the exponential function with the Gaussian.
The following properties immediately stand out: (i) The finite time resolution ensures that there
is also a signal at negative times, whereas it was O before convolution. (ii) The maximum is not
att = 0 any more. (iii) What can’t be seen straight away, yet is easy to grasp, is the following: the
center of gravity of the exponential function, which was at ¢ = 7, doesn't get shifted at all upon
convolution.

Now we prove the extremely important Convolution Theorem:

Theorem 2.1 (Convolution theorem). Let be

f{t) < F(w)
9(t) < G(w)

~+

Then
h(t) = f(t) ® g(t) <> H(w) = F(w) X G(w) (2.54)

The convolution integral becomes, through Fourier transformation, a product of the Fourier-transformed
ones.
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b Sty

Y

Figure 2.9: Result of the convolution of an unilateral exponential function with a Gaussian. The
exponential function without convolution is indicated with the thin line

Proof.

N i RGO
= /f@wﬂ%[/ﬁ@—fw%““ﬂﬁ dé

t'=t—

5/7@&**%@@)
—  Fw)Gw)

The integration boundaries +0o did not change by doing that, and G(w) does not depend on €.
The inverse Convolution theorem is:

Theorem 2.2 (Inverse convolution theorem). Let be

ft) < F(w
g(t) < G(w
Then
ht) = F() % g(t) & H(w) = % Flw) ® Gw) 2.55)
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Proof.

H(w) = / F() g(t) e dt

1 ot 1 - .
— /(—/F(w’) et dw’ x —/G(w”) et tdw”) et dt
2 2T

1 N / "
— @y /F(w')/G(w”)/eZ(“ D qt dw’ dw”
7

N J/

~
=276 (w'+w" —w)

1 / / /
= 5 F(w) Gw—w') dw
= %F(m)@G(w)

Contrary to the Convolution Theorem (2.54) in (2.55) there is a factor 1 /2 in front of the convo-
lution of the Fourier transforms.

A widely popular exercise is the unfolding of data: the instruments’ resolution function “smears
out” the quickly varying functions, but we naturally want to reconstruct the data to what they
would look like if the resolution function was infinitely good — provided we precisely knew the
resolution function. In principle, that’s a good idea — and thanks to the Convolution Theorem,
not a problem: we Fourier-transform the data, divide by the Fourier-transformed resolution
function and transform it back. For practical applications it doesn't quite work that way. As
in real life, we can’t transform from —oo to +00, we need low-pass filters, in order not to get
“swamped” with oscillations resulting from cut-off errors. Therefore, the advantages of unfold-
ing are just as quickly lost as gained. Actually, the following is obvious: whatever got “smeared”
by finite resolution, can’t be reconstructed unambiguously. Imagine that a very pointed peak
got eroded over millions of years, so there’s only gravel left at its bottom. Try reconstructing the
original peak from the debris around it! The result might be impressive from an artist’s point of
view, an artifact, but it hasn't got much to do with the original reality.

Ex. 2.6 Convolution: Gaussian frequency distribution. Lorentzian fre-
quency distribution

2.2.4.2 Cross Correlation

Sometimes, we want to know if a measured function f(¢) has anything in common with another
measured function g(t). Cross correlation is ideally suited to that.
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Definition 2.6 (Cross correlation).

+oo

h(t) = f&) gt +&)dg = f(t) » g(t) (2.56)

—00

Important note: Here, there is a plus sign in the argument of g, therefore we don’t mirror g(¢).
For even functions ¢(t) this doesn't matter. The asterisk * means complex conjugated. We may
disregard it for real functions. The symbol x means cross correlation, and is not to be confounded
with ® for folding. Cross correlation is associative and distributive, yet not commutative. That's
not only because of the complex-conjugated symbol, but mainly because of the plus sign in the
argument of ¢(t). Of course, we want to convert the integral in the cross correlation to a product
by using Fourier transformation.

Theorem 2.3 (Cross correlation). Let be

ft) < F(w
g(t) < G(w
Then
h(t) = f(t) *xg(t) +» Hw) = F(w) x G*(w) (2.57)
Proof.

Hw) = //f (&) dEe ™ dt

_ /f U (t+6)e “"tdt} de

_ / £(6) G (+w) € de
= F(w) x G*(w)

In the third passage we used the first shifting rule (2.45) with £ = —a. In the last passage we use
the following identity:

Gw) = /g e " dt
G*<W) — /g —‘riwt dt
G'(—w) = /g e ™t dt
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The interpretation of (2.57) is simple: if the spectral densities of f(¢) and g(t) are a good match,
i.e. have much in common, then H(w) will become large on average, and the cross correlation
h(t) will also be large, on average. Otherwise, if F'(w) would be small e.g. where G*(w) is large
and vice versa, so that there is never much left for the product H(w). Then also A(t) would be
small, i.e. there is not much in common between f(¢) and g(¢).

2.2.4.3 Autocorrelation

The autocorrelation function is the cross correlation of a function f(t) with itself. We may ask,
for what purpose we’d want to check for what f(¢) has in common with f(¢). Autocorrelation,
however, seems to attract many people in a magical manner. We often hear the view, that a signal
full of noise can be turned into something really good by using the autocorrelation function, i.e.
the signal-to-noise ratio would improve alot. Don't you believe a word of it! We'll see why shortly.

Definition 2.7 (Autocorrelation).
) = [ ) 57(6 + 1) dg .59

From its definition and the cross-correlation theorem (2.57) we have the so called
Theorem 2.4 (Wiener-Khinchin theorem).

1(0) & Flw) s
BE) = F() * F(1) 0 H(w) = Fw) x F*(@) = |[F@)? |
We may either use the Fourier transform F'(w) of a noisy function f(¢) and get angry about the
noise in F'(w), or we first form the autocorrelation function A(t) from the function f(¢) and are
then happy about the Fourier transform H (w) of function h(t). Normally, H(w) does look a lot
less noisy, indeed. Instead of doing it the roundabout way by using the autocorrelation function,
we could have used the square of the magnitude of F'(w) in the first place. We all know, that a
squared representation in the ordinate always pleases the eye, if we want to do cosmetics to
a noisy spectrum. Big spectral components will grow when squared, small ones will get even
smaller. But isn’t it rather obvious that squaring doesn’'t change anything to the signal-to-noise
ratio? In order to make it “look good”, we pay the price of losing linearity.

2.2.4.4 'The Parseval Theorem

The autocorrelation function also comes in handy for something else, namely for deriving Par-
seval theorem. We start out with (2.58), insert especially ¢ = 0, and get Parseval theorem:

Theorem 2.5 (Parseval theorem).

ho) = / PP i = o / F(w)P dw 2.60)
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The second equal sign is obtained by inverse transformation of |F'(w)|? where, for t = 0, e™*
becomes unity.

Equation (2.60) states that the information content of the function f(z) — defined as integral over
the square of the magnitude - is just as large as the information content of its Fourier transform
F(w) (same definition, but with 1/(27)).

2.2.5 Fourier Transformation of Derivatives

When solving differential equations, we can make life easier using Fourier transformation. The
derivative simply becomes a product:

(2.61)

The proof is straight-forward:

Proof.
+oo ' ' 1o |
FT(f/(t)) = i f/(t) e~ Wt gy — f() efzwt’jg — (—iw) _ ft) oWt gy
= wkF(w)

The first term in the partial integration is discarded, as f(t) — 0 fort — oo, otherwise f(¢)
could not be integrable. This game can go on:

FT (dfd”_n(tt)) = (iw)"F(w) (2.62)

For negative n we may also use the formula for integration. We can also formulate in a simple
way the derivative of a Fourier transform F'(w) with respect to the frequency w:

dF(w)
o = FT(t f(t)) (2.63)
Proof.
dF(UJ) _ oo d —iwt _ . oo —iwt _ -
W . f(t) ¢ dt = —i - f)te ™ dt = —i FT(t f(t))

2.2.6 Fourier Transform and Uncertainty Relation

At this point it should be clear that the behavior of a function and its Fourier transform is in a
certain sense complementary: to a function which is “wide spread” in the time domain corre-
sponds a Fourier transform which is “narrow” in the frequency domain and vice versa (see, e.g.,
the case for f(t) a constant). This rather qualitative statement can be proven mathematically,
but in order to do that we need the following
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Lemma 2.6 (Cauchy-Schwarz Inequality). Foranysquareintegrable functions z(x) andw(x) defined

on the interval [a, D],
2 b b
g/ ]z(:c)|2dx/ w(zf? da 2.64

and equality holds if and only if z(x) is proportional to w*(x) (almost everywhere in [a, b)).

z(z)w(x) dz

Proof. Assume z(z) and w(x) are real (the extension to complex-valued functions is straight-
forward). Let

b
1) = [ o) - yu) ds

— /ab 2(z) dr —2y /abz(a:)w(x) dz 4+ /awa(x) dx

N J/ N J/ N J/
~ N N

A B c
= A-—2By+ Cy?

Clearly, I(y) > Oforally € R. ButifI(y) = A—2By+Cy* > Oforally € Rthen B>~ AC < 0.
If B2 — AC = 0, then I(y) has a real double root such that I (k) = 0 for y = k. Therefore (2.64)
holds and if it is an equality, then (y) has a real root which implies

b
I(k) = / [2(z) — kw(z))” dz =0
But this can only occur if the integrand is identically zero; thus z(z) = kw(x) for all z.

Definition 2.8 (Energy and distances for a signal). Suppose f (1) is a finite energy signal with Fourier

transform F'(w). Let
+oo +oo
E = / If@)2dt = — / w)|? dw

+00
P = —/ t2|f )|? dt

2

w2 2
27rE | WIFW) dw

Theorem 2.7 (Uncertainty Principle). If\/|t| f(t) — Oas|t| — oo, then

Dd> (2.65)

N | —

and equality holds ifand only if f () has the form f(t) = K e~".
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Proof. Assume f(t) is real. Lemma 2.6 implies

+o0 df 2 +o0 +oo df 2
tf—=dt| < 2 12 dt R 2.66
‘/oo / dt - /oo ! /Oo ‘dt (2.66)

Let us define

+oo df
A = tf—=—dt
I
1 —+00 d2
_ —/ L
2 dt

1 1 [t
= §tf2’f§_§ f2dt
— __OO,_/
@ B
when in the last passage we integrated by parts. By assumption \/|t| f — 0 — [t|f* — 0 =
tf* — 0. Thus a = 0. Furthermore 3 = E/2 and so

E
A=—— 2.67
5 (2.67)
Recalling (2.61), the Fourier transformation of derivatives, we have df /dt < iwF(w). From the

Parseval Theorem (2.60) we obtain

+o0
| i

Substituting (2.67) and (2.68) into (2.66) we obtain

2 +00
LA 2l/ W F(w)]2 duw 2.68)
™ —Oo

5 = - < 22 _ 2F 2 .
' 5 ‘/_ootfdtdt _/_OotfthQW/_OOw](wﬂdw (2.69)
pe ED?
That is
1
dD = 92 (2.70)

If (2.70) is an equality, then (2.66) must be. This is possible only if (Lemma 2.6)
@ 1) =kt 7(1)
e’

which means

flt) = Kee"

Remember that the Fourier transform of a Gaussian is a Gaussian.
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The Uncertainty Relation (2.70) states that one cannotjointly localize a signal in time and frequency
arbitrarily well; either one has poor frequency localization or poor time localization. In signal
analysis, this means that no window function can be chosen which is arbitrarily sharply concen-
trated both in time and frequency domain, and that the function that gives the best compromise
about the “localization” is a Gaussian.

In quantum mechanics, the momentum and position wave functions are Fourier transform pairs
(that is conjugate variables), to within a factor of Planck’s constant. With this constant properly
taken into account, the inequality (2.70) becomes the statement of the Heisenberg uncertainty
principle.

2.3 Spectral Leakage

By necessity, every observed signal we process must be of finite extent. The extent may be ad-
justable and selectable, but it must be finite. If we observe the signal for T" units of time, in or-
der to apply our continuous Fourier transformations we perform a so-called period extension of our
data, as shown in Figure 2.10a. It is evident that if the periodic extension of a signal does not
commensurate with its natural period, then discontinuities at the boundaries will be present
(see Figure 2.10b). These discontinuities will introduce spurious frequencies, responsible for
spectral contributions over the entire set of frequencies. This effect is called spectral leakage.
In order to clarify why we are talking about leakage, let us take as an example a 3 Hz sine wave,
as in the left panel of Figure 2.11. Suppose that the data are sampled at 1 Hz frequency (that is,
every one second). In this case there is no problem to display the three Hertz sine wave in the
frequency domain, because three Hertz is an integer multiple of the frequency resolution of 1 Hz
(we are in the case shown in Figure 2.10a).

On the right panel of Figure 2.11 we show the case when we want to analyze a 2.5 Hz sine wave:
it is not clear how to handle this situation because, due to the acquisition settings, displaying
data at 2.5 Hz is not possible. So the 2.5 Hz signal will leak from zero Hertz to the full band-
width, as shown in Figure 2.12. This might be surprising, as intuitively one might guess that the
spectral leakage would be confined to the adjacent frequency lines (2 Hz and 3 Hz in this case).
But remember: we are performing a period extension of our data, that is, we transform our data
in a continuous periodic signal extended from 7' = —oo to T = +00, in order to apply continu-
ous Fourier transformation. This means that we are spreading the not periodicty over the entire
frequency range.

A signal with leakage (green in Figure 2.12) has lower amplitude and a broader frequency re-
sponse than a signal with no leakage (red in Figure 2.12). This makes it difficult to quantify the
signal properly in the frequency domain.

2.3.1 Window Functions

In order to reduce spectral leakage associated with finite observations intervals we apply to the
data weighting functions, called windows. From one viewpoint, the window is applied to data
(as a multiplicative weighting) to reduce the order of the discontinuity of the periodic extension
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Signal Measured Periodically
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(a) The captured signal happened to be periodic, and the recreated signal matches the original.

Signal Measured Non-Periodically

}47 Measurement 4’1
Time

Repeated
Signal does not
Captured Signal look like
Original
Signal!

'/\‘ /\‘

Repeated Signal

(b) The captured signal is not periodic, causing discontinuities in the recreated signal.

Figure 2.10: Periodic extension of a sinusoidal signal periodic and not periodic in the observation
interval.
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Sine Wave FFT Analysis
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Figure 2.11: Left: A 3 Hz sine wave has the correct amplitude at a 1 Hz frequency resolution.

Right: When the sine wave is not an integer multiple of the frequency resolution.
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Figure 2.12: Frequency spectrum of sine wave aligning with frequency resolution (red) and sine
wave not aligning with frequency resolution (green).
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(Figure 2.13a). This is accomplished by matching as many orders of derivatives (of the weighted
data) as possible at the boundary. The easiest way to achieve this matching is by setting the value
of these derivatives to zero or near zero. Thus windowed data are smoothly brought to zero at the
boundaries so that the periodic extension of the data is continuous in many orders of derivatives
(Figure 2.13b).

From another viewpoint, the window is multiplicatively applied to the Fourier frequencies so
that a signal of arbitrary frequency will exhibit a significant component for frequencies close to
the Fourier frequencies. Of course both viewpoints lead to identical results.

In Figure 2.14 we show the effect of applying a window to our data in order to reduce the leakage.
It could be argued that, by applying a window to our data, the signal is not perfectly replicated.
But the main benefit is that the leakage is now confined over a smaller frequency range, instead
of affecting the entire frequency bandwidth of the measurement.

Allwindow functions are, of course, even functions. The Fourier transforms of the window func-
tion therefore don't have an imaginary part. We require a large dynamic range in order to bet-
ter compare window qualities. That's why we'll use logarithmic representations covering equal
ranges. And that’s also the reason why we can’t have negative function values. To make sure they
don't occur, we'll use the power representation, i.e. |F'(w)]?.

2.3.2 Types of Window Functions

There are several different types of window functions that we can apply depending on the signal.
An actual plot of a window shows that the frequency characteristic of a window is a continuous
spectrum with a main lobe and several side lobes. The main lobe is centered at each frequency
component of the time-domain signal, and the side lobes approach zero. The height of the side
lobes indicates the affect the windowing function has on frequencies around main lobes (see
Figure 2.15). The side lobe response of a strong sinusoidal signal can overpower the main lobe
response of a nearby weak sinusoidal signal. Typically, lower side lobes reduce leakage but in-
crease the bandwidth of the major lobe. The side lobe roll-off rate is the asymptotic decay rate
of the side lobe peaks. By increasing the side lobe roll-off rate, we can reduce spectral leakage.
Selecting a window function is not a simple task. Each window function has its own character-
istics and suitability for different applications. To choose a window function, we must estimate
the frequency content of the signal.

(J Ifthesignal contains strong interfering frequency components distant from the frequency
of interest, choose a smoothing window with a high side lobe roll-off rate.

(J If the signal contains strong interfering signals near the frequency of interest, choose a
window function with a low maximum side lobe level.

O If the frequency of interest contains two or more signals very near to each other, spectral

resolution is important. In this case, it is best to choose a smoothing window with a very
narrow main lobe.
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(@) Windows are designed to reduce the sharp transient in the recreated signal as much as possible. The
captured signal is multiplied by the window.
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(b) The windowed signal is period extended: the sharp transients are eliminated and smoothed out, even
though the repeated signal does not match the original signal.

Figure 2.13: Effect of application of a window to a not periodic data in the observation interval.

44

M.Orlandini



AY.2024/2025 Temporal Data Analysis

Sine wave: No Leakage, Leakage, Windowed
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— Windowed
7]
o
3
2
=]
£
©
Zero Bandwidth
Frequency
Hz

Figure 2.14: Periodic sine wave without leakage (red), non-periodic sine wave with leakage
(green), and windowed non-periodic sine wave with reduced leakage (blue).

(1 If the amplitude accuracy of a single frequency component is more important than the
exact location of the component in a given frequency bin, choose a window with a wide
main lobe.

( If the signal spectrum is rather flat or broadband in frequency content, use the uniform
window, or no window.

1 In general, the Hanning (Hann) window is satisfactory in 95 percent of cases. It has good
frequency resolution and reduced spectral leakage. If we do not know the nature of the
signal but we want to apply a smoothing window, start with the Hann window.

Even if we use no window, the signal is convolved with a rectangular-shaped window of uniform
height, by the nature of taking a snapshot in time of the input signal and working with a discrete
signal. This convolution has a sine function characteristic spectrum. For this reason, no window
is often called the uniform or rectangular window because there is still a windowing effect.

The Hamming and Hann window functions both have a sinusoidal shape. Both windows result
in a wide peak but low side lobes. However, the Hann window touches zero at both ends elimi-
nating all discontinuity. The Hamming window doesn’t quite reach zero and thus still has a slight
discontinuity in the signal. Because of this difference, the Hamming window does a better job
of cancelling the nearest side lobe but a poorer job of canceling any others.

These window functions are useful for noise measurements where better frequency resolution
than some of the other windows is wanted but moderate side lobes do not present a problem.

M.Orlandini 45



Temporal Data Analysis AY.2024/2025

Rectangular window Fourier transform
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Figure 2.15: Rectangular window function and its Fourier transform in power representation.

2.3.3 The Rectangular Window

1 for —T/2<t<T/2
f(t) = { 0 e?:e 2stsT) 2.71)
has the power representation of the Fourier transform (see (2.43)):
. 2
F(w)]? = T (%) @.72)

The rectangular window and this function are shown in Figure 2.15.

2.3.3.1 Zeroes

Where are the zeros of this function? We'll find them at w7/2 = Ir with ! = 1,2,3,... and
without the zero! The zeros are equidistant, the zero at [ = 0 in the numerator gets plugged by
a zero in the denominator.

2.3.3.2 Intensity at the Central Peak

Now we want to find out how much intensity is at the central peak, and how much gets lost in
the sidebands (sidelobes). To get there, we need the first zero at w7'/2 = 7w orw = +27 /T and:

+27T/T : T 2 2 w — 2 +27 s 2
/ 72 (M) dw T2 T2—22/ ST g = 4T Si(27) 2.73)
—27)T wT'/2 T 0 xr
where Si(x) is the sine integral, defined as
Si(x) = / Sy dy (2.74)
o Y

The last passage in (2.73) may be proved as follows. We start out with
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T sin’ x
dx
0 x

and integrate per parts with u = sin’ rand v = —1/x:

. . i .
T sin? x sin’ z T 2sinxcosx
dr = + —dx
0 T r |, 0 T

iy : 2
_ / sin 2x de (2.75)
0

By means of the Parseval theorem (2.60) we get the total intensity

+o0 : T/9 2 +T/2
/ T? (M) dw = 27r/ 12dt = 27T (2.76)

o

The ratio of the intensity at the central peak to the total intensity is therefore

AT Si(2m) 2 .
= 7V ZGi(2n) = 0.
5 Si(27) = 0.903

This means that ~ 90% of the intensity is in the central peak, whereas some 10% are “wasted” in
the sidelobes.

2.3.3.3 Sidelobe Suppression

Now let’s determine the height of the first sidelobe. To get there, we need:

2
M =0 or also dF(w)

= 2.77
dw dw 0 ( )

and this occurs when

d sinx 0 z=wT/2 T COST — Sinx
dr =« x?

Solving this transcendental equation gives us the smallest possible solution + = 4.4934 or w =
8.9868/T'. Inserting this value in | F'(w)|? results in:

(e

Forw = O we get |F(0)|* = T?, the ratio of the first sidelobe height to the central peak height is
therefore 0.04719. It is customary to express ratios between two values spanning several order
of magnitude in decibel (short dB). The definition of decibel is

2

=T? % 0.04719 (2.78)
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dB = 10 log;, x (2.79)

Quite regularly people forget to mention what the ratio’s based on, which can cause confusion.
Here we're talking about intensity-ratios. If we're referring to amplitude-ratios, (that is, F'(w)),
this would make precisely a factor of two in logarithmic representation! Here we have a sidelobe
suppression (first sidelobe) of:

10 log,,0.04719 = —13.2dB

2.3.3.4 3dBBandwidth

As the 10 log;((1/2) = —3.0103 ~ —3, the 3 dB bandwidth tells us where the central peak has
dropped to half its height. This is easily calculated as follows

- (snmw772)>2__ Lo

wT'/2 2

Using = = wT/2 we have

. 92 x . xT
S1n 1'25 or smyr = —

V2

This transcendental equation has the following solution:

2.783
xr = 1.3915, thus wyqp = ——
T
This gives the total width (+w; 4p):
9.566
Aw = —— 2.80
w T (2.80)

This is the slimmest central peak we can get using Fourier transformation. Any other window
function will lead to larger 3 dB-bandwidths. Admittedly, it’s more than nasty to stick more
than 10% of the information into the sidelobes. If we have, apart from the prominent spectral
component, another spectral component, with — say — an approx. 10 dB smaller intensity, this
component will be completely smothered by the main component’s sidelobes. If we're lucky,
it will sit on the first sidelobe and will be visible; if we're out of luck, it will fall into the gap (the
zero) between central peak and first sidelobe and will get swallowed. So it pays to get rid of these
sidelobes.

Warning! This 3 dB-bandwidth is valid for | F'(w)|? and not for F'(w)! Since one often uses | F(w)|
or the cosine-/sine-transformation one wants the 3 dB-bandwidth thereof, which corresponds
to the 6 dB-bandwidth of | F(w)|?. Unfortunately, we cannot simply multiply the 3 dB-bandwidth
of | F(w)|? by v/2, we have to solve a new transcendental equation. However, it’s still good as a
first guess because we merely interpolate linearly between the point of 3 dB-bandwidth and the
point of the 6 dB-bandwidth. We'd overestimate the width by less than 5%.
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2.3.4 The Triangular Window (Fejer Window)

The first real weighting function is the triangular window:

(

2t
1+? for —T/2<t<0

f(t) = ot (2.81)
1_T for0 <t <T/2
0 else
\
Its Fourier transform is
T (sin(wT/4)\>
F == | — 2.82
W =3 ( WT/4 ) (2.82)
The zeros are twice as far apart as in the case of the “rectangular function”: w7/4 = I or

w = 4r/T with [ = 1,2,3,... The intensity at the central peak is 99.7%. The height of the
first sidelobe is suppressed by 2 x (—13.2dB) ~ —26.5 dB. The 3 dB-bandwidth is computed
as follows:

. W’ 1 wT 8.016
sin — = — = Aw=

4 3R 4
that is some 1.44 times wider than in the case of the rectangular window. The asymptotic behav-
ior of the sidelobes is —12 dB/octave.

full width

2.3.5 The Gauss Window

A pretty obvious window function is the Gauss function.

1t
£(t) = exp (—52) for —T/2<t<+T/2 (2.83)

0 else

Its Fourier transform is

) 5 2, 2 2 2,2 2
flw) = 0\/Ee_af [erfc (—ig d + T—) + erfc (+@'U w + T—)} (2.84)
2 \/5 82 \/§ 802

Asthe error function occurs with complex arguments, though together with the conjugate com-
plex argument, F'(w) is real. The function f(¢) with o = 2 and | F(w)|? is shown in Figure 2.16.

2.4 Windowing or Convolution?

In principle, we have two possibilities to use window functions:
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Gaussian window (o = 0.4) Fourier transform
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Figure 2.16: Gauss window and power representation of the Fourier transform

0 Either we weight, i.e. we multiply, the input by the window function and subsequently
Fourier-transform, or

(J We Fourier-transform the input and convolute the result with the Fourier transform of the
window function.

According to the Convolution Theorem (2.54) we get the same result. What are the pros and cons
of both procedures? There is no easy answer to this question. What helps in arguing is thinking
in discrete data. Take, e.g., a weighting window. Let’s start with a reasonable value for the its
parameter, based on considerations of the trade-oft between 3 dB-bandwidth (i.e. resolution)
and sidelobe suppression. In the case of windowing we have to multiply our input data, say N
real or complex numbers, by the window function which we have to calculate at N points. After
that we Fourier-transform. Should it turn out that we actually should require a better sidelobe
suppression and could tolerate a worse resolution — or vice versa — we would have to go back to
the original data, window them again and Fourier-transform again.

The situation is different for the case of convolution: we Fourier-transform without any bias con-
cerning the eventually required sidelobe suppression and subsequently convolute the Fourier
data (again N numbers, however in general complex!) with the Fourier-transformed window
function, which we have to calculate for a sufficient number of points. What is a sufficient num-
ber? Of course, we drop the sidelobes for the convolution and only take the central peak! This
should be calculated at least for five points, better more. The convolution then actually consists
of five (or more) multiplications and a summation for each Fourier coefficient. This appears
to be more work; however, it has the advantage that a further convolution with another, say
broader Fourier-transformed window function, would not require to carry out a new Fourier
transformation. Of course, this procedure is but an approximation because of the truncation of
the sidelobes. If we included all data of the Fourier-transformed window function including the
sidelobes, we had to carry out N (complex) multiplications and a summation per point, already
quite a lot of computational effort, yet still less than a new Fourier transformation. This could
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be relevant for large arrays, especially in two or three dimensions like in image processing and
tomography.
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Chapter

Temporal Analysis on Digital Data

As we have already mentioned, every observed signal we process must be of finite extent. Pro-
cessing a finite-duration observation imposes interesting and interacting considerations on the
harmonic analysis. Furthermore, for practicality the data we process are NV uniformly (this con-
dition can also be raised) spaced samples of the observed signal. For convenience, N is highly
composite, and we will assume N is even. The harmonic estimates we obtain through the dis-
crete Fourier transformation (DFT) are N uniformly spaced samples of the associated periodic
spectra. This approach is elegant and attractive when the processing scheme is cast as a spectral
decomposition in an N-dimensional orthogonal vector space. Unfortunately, in many practical
situations, to obtain meaningful results this elegance must be compromised. One such com-
promise consists of applying windows to the sampled data set, or equivalently, smoothing the
spectral samples.

The two operations to which we subject the data are sampling and windowing. These operations
can be performed in either order. We will address the interacting considerations of window se-
lection in harmonic analysis and examine the special considerations related to sampled windows
for DFT.

3.1 Discrete Fourier Transformation

Often we do not know a function’s continuous “behavior” over time, but only what happens at NV
discrete times:

th=kAt, k=0,1,2....N—1

In other words: we've taken our “pick”, that’s “samples” f(t;) = fi at certain points in time ¢y
Any digital data-recording uses this technique. So the data set consists of a series { f}. Out-
side the sampled interval T = N At we don’t know anything about the function. The discrete
Fourier transformation (DFT) automatically assumes that { fj} will continue periodically out-
side the interval’s range. At first glance this limitation appears to be very annoying, maybe f(¢)
isn't periodic at all, and even if f(t) were periodic, there’s a chance that our interval happens to
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Figure 3.1: Correctly wrapped-around (top); incorrectly wrapped-around (bottom)

Y

correct

Y

truncate at the wrong time (meaning: not after an integer number of periods. See Figure 2.10b).
To make life easier, we'll also take for granted that N is a power of 2. We'll have to assume the
latter anyway for the Fast Fourier Transformation (FFT) which we'll cover in Section 3.5.

3.1.1 Evenand Odd Series and Wrap-around

A series is called even if the following is true for all f;:

f-r =[x 3.1

A series is called odd if the following is true for all fj:

fr=—1k (3.2)
Please note that fj is compulsory! Any series can be broken up into an even and an odd series.
But what about negative indices? We'll extend the series periodically:

f=k = fn—k 3.3)

This allows us, by adding N, to shift the negative indices to the right end of the interval, or using
another word, “wrap them around”, as shown in Figure 3.1. Please make sure f; doesn't get
wrapped, something that often is done by mistake. The periodicity with period N, which we
always assume as given for the discrete Fourier transformation, requires fx = f;. Inthe second
example — the one with the mistake — we would get f, twice next to each other (and apart from
that, we would have overwritten fy).

3.1.2 The Kronecker Symbol or the Discrete /-Function

Before we get into the definition of the discrete Fourier transformation (forward and inverse
transformation), a few preliminary remarks are in order. From the continuous Fourier trans-
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formation term ¢! we get the discrete times ¢, = k At, k =0,1,2,..., N — 1withT = NAt:
, 2mt\ 2rk At 2k g
exp(iwt) — exp (ZT> = exp (7, NAL ) = exp ( I ) =Wy (3.4)
We will use the abbreviation for the “kernel” Wy as
o
Wy = exp (%) (3.5)

Occasionally we will also use the discrete frequencies w;
2mj
wW; = ——
7 NAt

related to the discrete Fourier coefficients F); (see below). The kernel Wy has the following prop-
erties:

(3.6)

WiN =¢e?™n =1 forallinteger n
(3.7)
Wy is periodic in j and k with period N
We can define the discrete 0-function as follow:
N-1 N
WS = N (3.8)
=0
where 6y, ;- is the Kronecker symbol with the following property:
1 fork=F
Ok = { 0 else (3.9)

This symbol (with prefactor N) accomplishes the same tasks the -function had when doing the
continuous Fourier transformation.

3.1.3 Definition of the Discrete Fourier Transformation

Now we want to determine the spectral content { F;} of the series { fi.} using discrete Fourier
transformation. For this purpose, we have to make the transition in the definition of the Fourier
series:

1 [T7/2 omi /T 1 N omijh/N
;= = t)ye =™ dt — — E e 3.10

with f(t) periodic of period T'.
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In the exponent we find kAt /N At, meaning that At can be eliminated. The prefactor contains
the sampling raster At, so the prefactor becomes At/T = At/(NAt) = 1/N. During the tran-
sition (3.10) we tacitly shifted the limits of the interval from —7'/2to +7'/2to 0 to T', something
that was okay, as we integrate over an integer period and f(t) was assumed to be periodic of pe-
riod T'. The sum has to come to an end at V — 1, as this sampling point plus At reaches the limit
of the interval. Therefore we get, for the discrete Fourier transformations:

Definition 3.1 (Discrete Fourier transformations).

-1
1 ,
=5 > WM with Wy = e/ (3.11a)

fo=>Y_ F WM with Wy = 2/N (3.11b)

Please note that the inverse Fourier transformation (3.11b) doesn’'t have a prefactor 1/N.

A bit of a warning is called for here. Instead of (3.11) we also come across definition equations
with positive exponents for the forward transformation and with negative exponent for the in-
verse transformation. For example Press ef al. use this convention, and this is what is used in
X-ray astronomy (see (5.1) at page 91). This doesn’t matter as far as the real part of { F}} is con-
cerned. The imaginary part of { F; }, however, changes its sign. Because we want to be consis-
tent with the previous definitions of Fourier series and the continuous Fourier transformation
we'd rather stick with the definitions (3.11) and remember that, for example, a negative, purely
imaginary Fourier coefficient F; belongs to a positive amplitude of a sine wave (given positive
frequencies), as i of the forward transformation multiplied by i of the inverse transformation
results in precisely a change of sign i* = —1.

Often also the prefactor 1 /N of the forward transformation is missing (again this is the case for
Press et al.) This prefactor has to be there because Fj is to be equal to the average of all samples.
As we will see, also the Parseval theorem will be grateful if we stick with our definition of the
forward transformation. Using (3.8) we can see straight away that the inverse transformation
(3.11b) is correct:

(3.12)

Ex.3.1 Discrete Fourier Transformation: Constant function. Cosine func-
tion. Sine function.
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3.2 Theorems and Rules

3.2.1 Linearity Theorem

If we combine in a linear way { f;, } and its series { F; } with { g, } and its series { G, }, the we get:

{fe} & {F;}
{gx} < {G;} (3.13)
ax {fe} +bx{g} < ax{F;}+bx{G;}

Please always keep in mind that the discrete Fourier transformation contains only linear opera-
tors, but that the power representation is not a linear operation.

3.2.2 Shifting Rules

{fe} © {F;}

) 3.14
{fe—n} < {FEW"} n integer (3.14)

A shift in the time domain by n results in a multiplication by a phase factor Wy ’". Let us proof
it:

Proof.

shifted
Fj

1 ML . .
& D Fe W
k'=0
— }g?ldWJ;"J (3.15)

Because of the periodicity of f;, we may shift the lower and the upper summation boundaries
by n without a problem.

Ex.3.2  First Shifting Rule: Shifted cosine with N = 2
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-
N

Figure 3.2: Two samples per period: cosine (left ); sine (right)

{fe} < {F;}

3.16
{AWN™} < {Fin} n integer (3.16)

A modulation in the time domain with W "* corresponds to a shift in the frequency domain.
The proof is trivial.

Ex.3.3 Second Shifting Rule: Modulated cosine with N = 2

3.2.3 Scaling Rule/Nyquist Frequency

We saw above that the highest frequency wy.x or also —wyax corresponds to the center of the
series of Fourier coefficients. This we get by inserting j = N/2 in definition of the discrete
frequency (3.6):

2r N s

NETNA2 T AL
This frequency is called Nyquist frequency or cut-off frequency. This corresponds to take two sam-
ples per period, as shown in Figure 3.2.
While we'll get away with this in the case of the cosine it definitely won't work for the sine! Here
we grabbed the samples at the wrong moment, or maybe there was no signal after all. In fact,
the imaginary part of f; at the Nyquist frequency always is 0. The Nyquist frequency therefore
is the highest possible spectral component for a cosine wave; for the sine it is only up to:

= QNyq (317)

2n(N/2 —1)
W = N—At = QNyq(l — 2/N)
Equation (3.17) is our scaling theorem, as the choice of At allows us to stretch or compress the

time axis, while keeping the number of samples N constant. This only has an impact on the
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— interval — — interval —_—

g-1 9 9 go G g7

Figure 3.3: Resolution function { gy } : without wrap-around (left ); with wrap-around (right)

frequency scale running fromw = 0tow = Qyyq. At doesn't appear anywhere else! The nor-
malization factor we came across in (2.25) and (2.46), is done away with here, as using discrete
Fourier transformation we normalize to the number of samples NV, regardless of the sampling
raster At.

3.3 Convolution, Parseval Theorem

Before we're able to formulate the discrete versions of the (2.48), (2.56), (2.58), and (2.60), we
have to get a handle on two problems:

(J The number of samples N for the two functions f(t) and g(¢) we want to convolute or
cross-correlate, must be the same. This often is not the case, for example, if f(¢) is the
“theoretical” signal we would get for a §-shaped instrumental resolution function, which,
however, has to be convoluted with the finite resolution function g(¢). There’s a simple fix:
we pad the series { g, } with zeros so we get N samples, just like in the case of series { fx }.

0 Don't forget, that { f;. } is periodic in NV and our “padded” { gy}, too. This means that neg-
ative indices are wrapped-around to the right end of the interval. The resolution function
g(t) mentioned in Figure 3.3, which we assumed to be symmetrical, had three samples
and got padded with five zeros to a total of N = 8 and is displayed in Figure 3.3.

Aslongas { f; } is periodicin N, there’s nothing wrong with the fact upon convolution data from
the end/beginning of the interval will be “mixed into” data from the beginning/end of the inter-
val. If we don't like that — for whatever reasons — rather also pad { f; } with zeros, using precisely
the correct number of zeros so {gx } won't create overlap between fj and fy_; any more.

3.3.1 Convolution

We will define the discrete convolution as follows:
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Definition 3.2 (Discrete convolution).

N—

—_

1
— _ 3.18
N2 Ji gkt (3.18)

hi=(f®gh =

The “convolution sum” is commutative, distributive and associative. The normalization factor
1/N in context: the convolution of { f; } with the “discrete d-function” {g,} = Ndj is to leave
the series { f;} unchanged. Following this rule, also a “normalized” resolution function {g; }
should respect the condition ZkN:;l = N. Unfortunately often the convolution also gets defined
without the prefactor 1/N.

The Fourier transform of {h; } is

(3.19)

= F; G

In our last step we took advantage of the fact that, due to the periodicity in NV, the second sum
may also run from O to N — 1 instead of —/ to N — 1 — [. This, however, makes sure that the
current index [ has been totally eliminated from the second sum, and we get the product of the
Fourier transform F; and GG; . So we arrive at the discrete Convolution Theorem:

Theorem 3.1 (Discrete convolution theorem). Let be

{/i} < {F}
{oe} < {Gj}

Then
{he} = {(feg)e} < {H;} = {F; x Gj} (3.20)
The convolution of the series { f} and {g; } results in a product in the Fourier space.

Theorem 3.2 (Inverse discrete convolution theorem). Let be

{fe} < {F}
{oe} < {Gj}
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Then
(it = {fi} x Ao} & {H;} = {N(F'®G);} (3.21)
Proof.
1 N—-1 ' 1 N-1 N—
H; = N ar FegeWy™ = ; 9k Z: _kj Op, k'

J/

k’-sum “artiﬁcially” introduced
1 N-1 N-1 N-1
Z Z —K'j Z —1(k—k")
k=0 kE'=0 =0

l—sum yields N oy, 5/

N-1 1 N-1 1 N-1
_ . ka&lk_ Z gk,W];k (G-1)
1=0 N k=0 Nk’:o
N-1

Ex.3.4 Discrete Fourier Transform: Nyquist frequency with N = 8

3.3.2 Cross Correlation

We define for the discrete cross correlation between { f;.} and {g;}, similar to what we did in
(2.56):
Definition 3.3 (Discrete cross correlation).

N—

=(f*gh = Z X Giin (3.22)

=0

If the indices at g;, go beyond N — 1, then we'll simply subtract N (periodicity). The cross corre-
lation between { f; } and { g}, of course, results in a product of their Fourier transforms:

{fe} < {F}}
{9x} < {G;} (3.23)
i} = {(fsg)e} < {H;} = {F; x G}}
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Proof.
N—1 , N-1
1 1 * —k
H; = N N i gl+kWN
k=0 1=0
1 N—1 1 N-1
* —k
- N leZQZJrkWN ’
1=0 k=0
1 N-1
* —jl *

3.3.3 Autocorrelation
Here we have {g;} = {fx}, which leads to

N—

,_.

1
=(fx = N Ji X fiie (3.24)

1=0
and

{fi} < {F}}
{h} = {(f )i} & {H;} = {F; x F/} = {|F;|*}

In other words: the Fourier transform of the autocorrelation of { f; } is the modulus squared of
the Fourier series { /;} or its power representation.

(3.25)

3.3.4 Parseval Theorem

We use (3.24) for k = 0, that is kg, and get on the one side:

1 N-—1
= D IAF (3.26)
=0

On the other hand, the inverse transformation of { H,}, especially for k = 0, results in (see
(3.11b))

N—-1

ho= Y |F? (3.27)

=0
Put together, this gives us the discrete version of Parseval theorem:

N—

N-1

1

5 Z AP =D IEP (.28)
=0

=0
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3.4 The Sampling Theorem

When discussing the Nyquist frequency, we already mentioned that we need at least two sam-
ples per period to show cosine oscillations at the Nyquist frequency. Now we'll turn the tables
and claim that as a matter of principle we won't be looking at anything but functions f(¢) that
are “bandwidth-limited”, meaning that outside the interval [—{yyq, Qnyq| their Fourier trans-
forms F'(w) are 0. In other words: we'll refine our sampling to a degree where we just manage to
capture all the spectral components of f (). Now we'll skillfully use formulas we've learned when
dealing with the Fourier series expansion and the continuous Fourier transformation with each
other, and then pull the sampling theorem out of the hat. For this purpose we will recall (2.16)
and (2.17) which show that a periodic function f(¢) can be expanded into an (infinite) Fourier
series:

fO) = D Che™ wp =

k=—00

1 +T/2 '
O, = —/ Flt)e ™t dt  fork =041, 42, ...
T J 7/

Since F'(w) is 0 outside [—dnyq, (2nyq), We can continue this function periodically and expand it
into an infinite Fourier series. So we replace: f(t) = F(w),t = w, T//2 — Qlyyq, and get

F(w)= ) Cpe'me/
f=—o0 (3.29)

Q
Cr = ! /+ h F(w) e~tmke/ M g,
20yq J -

Qnyq

A similar integral also occurs in the defining equation for the inverse continuous Fourier trans-
formation (see (2.35)):

1 +QNyq .
flt) = 7 / F(w) e dw (3.30)
—{Nyq

The integrations boundaries are +(yyq, as F'(w) is band-limited. By comparing (3.30) with (3.29)
we have

+$nyq ,
/ F(w)e ™/ dyy = 20, Qnyg

Qnyq

+$Nyq
/ Flw)e“do = 2 f(2)

Qnyq

and the two integrals are the same if
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k
—imhw/Qngq = iwt =t = _Ir
Oy
therefore
2QNquk = QWf(—WIC/QNyq) (331)
Once we have inserted this in (3.29) we get:
T = .
P(w) == D F(=mh/ Q) e/ Por 3.32)
N = o

When we finally insert this expression in the defining equation (3.30), we get:

1 +yq T 400 | |
f(t) / Z f(_ﬂ-k/QNyq> e”rkw/QNyq elwt d(,u

= 2 Onya QNyq e —oo
1 = A +€2nyq A
= —k At 2/ cosw(t + k At) dw (3.33)
Mo, k;}@ f( ) i ( )
1 X sin Qnyq(t + k At)
- —k At A
Onyq k;oo / ) (t+kA?)

where we have defined At = 7/Qyyq. By replacing k& — —F (it’s not important in which order
the sums are calculated) we get the Sampling Theorem:

Theorem 3.3 (Sampling theorem). Ifafunction f(t) contains no frequencies higher that W cps (that is
is “bandwidth-limited”), then it is completely determined by giving its ordinates at a series of points spaced
1/2W apart. By choosing W = Q,, we obtain

B <= sin Quye(t — k At)
f(t) = kzzoof(kr A = Gt — D (3.34)

In other words, we can reconstruct the function f(¢) for all times ¢ from the samples at the times
k At, provided the function f(¢) is bandwidth-limited. To achieve this, we only need to multiply
f(kAt) with the function (sin z/x) (with z = Qyq(t — k At)) and sum up over all samples. The
factor (sin z/x) naturally is equal to 1 for t = k At, for other times, (sin x/x) decays and slowly
oscillates towards zero, which means, that f(¢) is a composite of plenty of (sin x/z)-functions
atthelocationt = k At with the amplitude f(kAt). Note that for adequate sampling with At =
7 /€nyq, €ach k-term in the sum in (3.34) contributes f(k At) at the sampling points ¢t = k At
and zero at all other sampling points whereas all terms contribute to the interpolation between
sampling points.
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‘ Aliased signal is correct amplitude, wrong frequency! ‘

Amplitude
i
—
—

_.——-—'_'::
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Time

Real signal
Aliased signal

e Digitized sample

Figure 3.4: Aliasing is caused when the digital sampling rate is not adequate to capture the fluc-
tuations in an analog signal, and results in the wrong frequency being identified. The red sine
wave is the original signal. The blue dots represent how often the signal is being sampled. The
blue line is how the signal will appear at the wrong frequency due to the low sampling rate.

Ex.3.5 Sampling theorem with N = 2

3.4.1 Aliasing

What happens if, for some reason or other, our sampling happens to be too coarse and F'(w)
above (2yyq was unequal to 0? In Figure 3.4 we show a case, in which the original signal (in red)
is sampled at a frequency such that only one data point is tracked per period (the blue dots). The
blue line represents the reconstructed signal: the amplitude is correct but the frequency is not.

In order to correctly reconstruct not only the amplitude but also the frequency content of the
signal, we need at least two points per period. And the reason is evident from Figure 3.5: on the
left we show the sampling of a sine wave when only one point is sampled per period, f; = fsine-
In this case the amplitude of the reconstructed signal is zero. On the other hand, when we have
at least two points sampled per period (f; = 2 f;ine), We are able to extract the true frequency of
the sine wave.

Therefore, to properly sample all the desired frequency content of an incoming signal, one must
sample at (or above) the Nyquist rate. In data acquisition, the sampling frequency is twice as
high as the specified bandwidth. So, all frequency content below the specified bandwidth will
be sampled at a rate sufficient to accurately capture the frequency content.

When the incoming signal contains frequency content above the specified bandwidth, the sam-
pling frequency (2 times the bandwidth) will violate the Nyquist theorem (Eq. 3.34) for this higher
frequency content.
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a) 0 [o] o] [o] [o] b) [s] [+] [e] [o]
o] o o o
Observed frequency Observed frequency
fs = 1:sine fs = 21csine

Figure 3.5: f; represents the sampling frequency, fin represents the frequency of the sine wave.
a) When sampling at the same frequency as the incoming signal, the observed frequency is zero
Hertz. b) When sampling at twice the frequency of the sine wave, the observed frequency is fgine,
the true frequency of the sine wave.

When the Nyquist theorem is violated, spectral content above the bandwidth is mirrored about
the bandwidth frequency in an accordion-plated fashion. Specifically, for any frequency w in the
range 0 < w < (lyyq, the higher frequencies which are aliased with w are defined by

(2005 £ @), (Ayq £ W), ..., (kg £ ), ... (3.35)
To prove this, observe that, for t = (27)/(28yq) = 7/ nyq

Nyq

cos wt = cos (2kQNyq + w) LI cos | 2km L7 w =cos |7 w (3.36)
QNyq Q QNyq

Thus all data at frequencies 2k{2yyq £ w have the same cosine function as data at frequency w
when sampled at points 7 /{yyq apart. The same for the sine function. For example, if Qyyq =
100 cps, then data at 30 cps would be aliased with data at frequencies 170 cps, 230 cps, 370 cps,
430 cps, and so forth. Similarly, the power at these confounding frequencies is aliased with the
power in the lower frequencies, because the power quantities depends on terms containing sin?
and cos? functions.
Thus, higher frequency content appears to be at a lower frequency, or an “alias” frequency, as
shown in Figure 3.6. In other words: spectral density that would appear at ~ 2{y,q, appears at
w = 0! This “corruption” of the spectral density through insufficient sampling is called aliasing,
similar to someone acting under an assumed name. In a nutshell: when sampling, rather err on
the fine side than the coarse one! Coarser rasters can always be achieved later on by compressing
data sets, but it will never work the other way, round!
Let us see how the choice of the frequency resolution affects the signal processing. Because the
“golden equation” of digital processing A f = 1/T', we have

« The finer the desired frequency resolution, the longer the acquisition time;
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Figure 3.6: Aliasing causes frequency above the bandwidth to be mirrored across the bandwidth.

« The shorter the acquisition time, or frame size, the coarser the frequency resolution.
In Figure 3.7 two sine tones (100 Hertz and 101 Hertz) have been digitized, and a Fourier Trans-
form performed. This was done with two different frequency resolutions: 1.0 Hertz and 0.5
Hertz.
With the finer frequency resolution of 0.5 Hertz, rather than 1.0 Hertz, the spectrum shows two
separate and distinct peaks. The benefit of a finer frequency resolution is very obvious. This
might beg the question, why not use the finest frequency resolution possible in all cases?
There is a tradeoff. Per the “golden equation’ the amount of time data per frame is higher as the
frequency resolution is made finer. This can cause requirements for long time data acquisition:
o 10 Hz frequency resolution is desired, only 0.1 seconds of data is required
o 1Hertz frequency resolution requires 1 second of data
o 0.1 Hertz frequency resolution requires 10 seconds of data
o 0.01 Hertz frequency resolution requires 100 seconds of data!
In some situations, these long time acquisition requirements are not practical. For example, a
sports car may go from idle to full speed in just 4 seconds, making a 100 second acquisition, and
the corresponding 0.01 frequency resolution, impossible.
Rather than using the sine formulation of the Fourier Transform, a wavelet formulation can be
used instead (see Section 3.6 for a brief introduction on the wavelet transform). This can address
some of the time-frequency tradeofts.
As we will see into detail in Part II, two practical methods exist for handling this aliasing prob-
lem. The first method is to choose the Nyquist frequency sufficiently large so that it is phys-
ically unreasonable for data to exist above {lyyq. In general, it is a good rule to select {2yyq to
be one-and-a-half or two times greater that the maximum anticipated frequency. The choosing
(nyq equal to the maximum frequency of interest will give accurate results for frequencies below
Ongq-
The second method is to filter the data prior to sampling so that the information above a maxi-
mum frequency of interest is no longer contained in the filtered data.
An anti-aliasing filter is a low-pass filter that removes spectral content that violates the Nyquist
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Figure 3.7: Left: Spectrum with 1.0 Hertz frequency resolution makes two separate tones appear
as one peak. Right: Spectrum with 0.5 Hertz frequency resolution makes two separate tones
appear as two different peaks.
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Figure 3.8: Right: The ideal anti-aliasing filter would be shaped like a wall: cutting off all fre-
quencies beyond the specified bandwidth (f;/2). Right: The anti-aliasing filter has a -3dB roll
off point at the bandwidth.

criteria. This makes it so a 125 Hertz sine wave does not show up as 75 Hertz. The ideal anti-
aliasing filter would be shaped like a “brick wall”, completely attenuating all signals beyond the
specified bandwidth, as shown in the left panel of Figure 3.8.

In the real world, it is impossible to have this “wall shaped” filter. Instead, a very sharp analog
filter is used that has a -3dB roll off at the bandwidth and attenuates all frequencies 20% beyond
the bandwidth to zero as shown in in the right panel of Figure 3.8. This is why the “trustable”,
alias-free region of the spectrum is from zero Hz to 80% of the bandwidth. This alias-free range
is called the frequency span.
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Figure 3.9: Aliasing in images: On the left a properly sampled image of a brick wall. On the right
a spatial aliasing creates a Moire pattern

3.4.2 Application to Multi-Variable Signals and Images

The sampling theorem is usually formulated for functions of a single variable. Consequently,
the theorem is directly applicable to time-dependent signals and is normally formulated in that
context. However, the sampling theorem can be extended in a straightforward way to functions
of arbitrarily many variables. Gray-scale images, for example, are often represented as two-
dimensional arrays (or matrices) of real numbers representing the relative intensities of pixels
(picture elements) located at the intersections of row and column sample locations. As a result,
images require two independent variables, or indices, to specify each pixel uniquely — one for
the row, and one for the column.

Similar to one-dimensional discrete-time signals, images can also suffer from aliasing if the
sampling resolution, or pixel density, is inadequate. For example, a digital photograph of a
striped shirt with high frequencies (in other words, the distance between the stripes is small),
can cause aliasing of the shirt when it is sampled by the camera’s image sensor. The aliasing ap-
pears as a Moire pattern (see Figure 3.9). The “solution” to higher sampling in the spatial domain
for this case would be to move closer to the shirt, use a higher resolution sensor, or to optically
blur the image before acquiring it with the sensor.

3.4.3 Geometrical Representation of the Signal

Let us discuss on the sampling theorem in a different way. The 27'W evenly spaced samples of
a signal f(¢) can be thought of as coordinates of a point in a space of 27'WW dimensions. Each
particular selection of these numbers corresponds to a particular point in this space. Thus there
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is exactly one point corresponding to each signal in the band and with duration 7.

The number of dimensions 271 will be, in general, very high, and needless to say, such a space
cannot bevisualized. Itis possible, however, to study analytically the properties of an n-dimensional
space. To a considerable extent, these properties are a simple generalization of the properties

of two- and three-dimensional space, and can often be arrived at by inductive reasoning from
these cases.

The advantage of this geometrical representation of the signals is that we can use the vocabulary
and the results of geometry. If we imagine the 27'W coordinate axes to be at right angles to each
other, then distances in the space have a simple interpretation. The distance from the origin to

a point is analogous to the two- and three-dimensional cases

2TW
d=,|> a3} (3.37)
k=1
where 1z}, is the kth sample. From the sampling theorem (3.34) we have
oW .
sinm(2Wt — k)
t) = 3.38
) ];xk T(@Wt — k) G.38)
therefore
too | W
2 4, L 2
/_OO f dt = o ; z? (3.39)

where we used the property

/+°° sinm(2Wt — k) sinm(2Wt —1) . { 0 k#I

1

Hence the square of the distance to a point is 21V times the energy of the corresponding signal

o0

d*> =2W E = 2W (TP) (3.40)

where P is the average power over the time 7. If we consider only signals whose average power
is less than P, these will correspond to points within a sphere of radius » = v/2W T P. If noise
is added to the signal in transmission, it means that the point corresponding to the signal has
been moved a certain distance in the space proportional to the rms value of the noise. Thus noise
produces a small region of uncertainty about each point in the space.

3.5 Fast Fourier Transform

Cooley and Tukey started out from the simple question: what is the Fourier transform of a series
of numbers with only one real number (N = 1)? There are at least 3 answers:
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(d From (3.11a) with N = 1 follows:

1
Fo=1 Wi’ =fo (3.41)

(d From the Parseval theorem (2.60) follows:

1
|Fol* = 1 | fol? (3.42)

Because fj is real and even, this leads to Fy = 4 f;. Furthermore, Fj is also to be equal to
the average of the series of numbers, so there is no chance to get the minus sign.

[ We know that the Fourier transform of a d-function results in a constant and vice versa.
How do we represent a constant in the world of 1-term series? By using the number fj.
How do we represent in this world a §-function? By using this number f;. So in this world
there’s no difference any more between a constant and a d-function. Result: fj is its own
Fourier transform.

This finding, together with the trick to achieve N = 1 by smartly halving the input again and
again (that's why we have to stipulate: N = 27, p integer), (almost) saves us the Fourier trans-
formation. For this purpose, let’s first have a look at the first subdivision. We'll assume as given:
{fr} with N = 2P This series will get cut up in a way that one sub-series will only contain the
even elements and the other sub-series only the odd elements of { f. }:

{fie} = {far} k=0,1,2,...,M —1

(3.43)
{for} = {fors1} M = N/2
Proof.
fie+m = forrom = for = fi (3.44)
because of 2M/ = N and f periodic in N. Analogously for f .
The respective Fourier transforms are:
| Ml
—k
Fi i % Jie Wi
e (3.45)
Foo =37 2 Fua Wi

The Fourier transform of the original series is:
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| N
Fy= 2 fe Wy
k=0
1 M-1 ) 1 M-1 .
= 2 T Wy + N > fora W G.46)
k=0 k=0
1 M-1 W—] M-1
N fue Wi+ ]<7V ZfMWz\}k J=01,2,...,N -1
k=0 k=0
In our last step we used:
W = e 2x2miki/N _ o=2miki/(N/2) _ yy ki
W];(2k+1)j _ e—27ri(2k+1)j/N _ WA}kjwj;J

Together we get (remember that N = 2M):

1 1 ;
-F}ZéFl,J+§W];]F2J j:O,1,27...,N_].

or better

1

2

1 .
Fyom = §(F1,j —Wy'Fy)

Fy = =(Fi;+ Wy Fyy)

(3.47)

Please note that in (3.47) we allowed j to run from O to M — 1 only. In the second line in front of
F, j there really should be the factor:

WU — W WM = W wy NP = wyde e N

_Wdem — (3.48)

This “decimation in time” can be repeated until we finally end up with 1-term series whose Fourier
transforms are identical to the input number, as we know. The normal Fourier transformation
requires N? calculations, whereas here we only need pN = N In N.

Ex.3.6 FFT:Saw-toothwith N = 2and N = 4
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3.6 The Wavelet Transform

As we have discussed in Section 3.5, the traditional FFT decomposes a time signal into its com-
ponent sine functions of various frequency, amplitude, and phase.
From there, a spectrum (a plot of amplitude vs frequency) is generated. It is possible to calculate
many spectra for a single signal to see how the amplitudes and frequencies change with time.
When calculating a spectrum, there is an inverse relationship between observation time and
frequency resolution (the so called “golden equation” discussed in Section 3.4.1, page 66). Es-
sentially, the longer the time-chunk that is analyzed, the finer the frequency resolution that can
be obtained in the spectrum.
This means that when analyzing very short-time events (transients) with a short time window,
the frequency resolution is forced to be rather coarse. If the frequency resolution is refined, the
time block will be much greater than the transient event.
Therefore, when doing an FFT on short time duration events, there is a fair bit of smearing in
the frequency domain due to coarse frequency resolution. When attempting to dial in a finer
frequency resolution, the time domain resolution will suffer (Figure 3.10). This is a disadvantage
when using the FFT on short-time events.
On the other hand, the signal can be decomposed into wavelets (instead of sine functions). A
wavelet is a function that rapidly increases, oscillates about a zero mean, and rapidly decays (see
Figure 3.11).
In order to understand how wavelets correspond to frequency and time, let’s take a look at scaling
and shifting.
Scaling is straight forward, the wavelet is simply stretched or compressed in time.
A stretched wavelet (Figure 3.11, left) helps quantify the slow changing portion of a signal (low
frequency) while a compressed wavelet (Figure 3.11, right) helps quantify the abruptly changing
(high frequency) content of the signal.
The wavelet in the frequency domain has a band-pass characteristic. By stretching and com-
pressing the wavelet, the center frequency of the band-pass filter is shifted higher or lower.
The output of the wavelet analysis is frequency (scale) vs time (shift). The wavelet is both shifted
and scaled to determine how it aligns with various features of the signal.
For the purposes of simplicity, imagine that the wavelet is shifted though the time data. At each
location, the shape of the wavelet is “compared” to the shape of the time data. Similarities be-
tween the time data and wavelet indicate that the frequency content that the wavelet represents
is present (Figure 3.13).
Wavelets of different scales and shifts are convolved with the original signal to determine if the
original signal has similar frequency content.
« Each wavelet has a corresponding “frequency”, and the result of the convolution will deter-
mine if the original signal at that particular shift (time) also contains that same frequency.
« Therefore, it can be determined what frequency content is present at what time via wavelet
analysis.
Essentially, wavelets can be thought of as a discrete-time filter-bank of band-pass filters.
So, what are the main differences between FFT and Wavelet? By nature of the processing type,
the traditional FFT has a fixed relationship between time and frequency. Conversely, the wavelet
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Figure 3.10: Top: Time signal of transient event. Middle: FFT with a 0.02 second frame size
resulting in 50Hz frequency resolution. Fine time resolution, coarse frequency resolution. Bot-
tom: FFT with a 0.20 second frame size resulting in 5Hz frequency resolution. Finer frequency
resolution, coarser time resolution.
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Sine wave

Wavelet

Figure 3.11: Comparison of a sine wave vs a wavelet function. A sine wave oscillates in time from
negative infinity to infinity. Contrarily, a wavelet oscillates for a short time duration.

Lower frequency Higher frequency

Figure 3.12: Stretched wavelets (left) represent lower frequencies, while compressed wavelets

(right) represent higher frequencies.

Figure 3.13: Shifting of a wavelet though time data: from left to right the wavelet is shifted in

time relative to the signal being analyzed.
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Traditional FET

Frequency
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Time Time

Figure 3.14: Change of frequency resolution in FFT and wavelet analysis. Left: The FFT smear and
resolution is equal at all frequencies. Right: Conversely, wavelets have a variable relationship
between time and frequency.

does not have a fixed relationship between time and frequency.
As shown in Figure 3.14, wavelets have different behavior at different frequencies:

[ At lower frequencies, the data will be finer in the frequency domain, and more smeared
in the time domain. At lower frequencies, octave bands are narrower, resulting in less
smearing. At high frequencies, octave bands are broader resulting in more smearing.

(J At higher frequencies, the data will be finer resolution in the time domain, and more
smeared in the frequency domain The change in time resolution is due to the stretching
of the wavelets at low frequency and the shrinking of wavelets at high frequency.

The change in the frequency resolution is due to the fact that the frequency scale for the wavelet
processing is based on octaves.

Figure 3.15 shows the wavelet result of a transient event. Look at the right side of Figure 3.14 to
better understand how data is smeared in a wavelet map as shown in Figure 3.15.

Animpulse in the time domain is represented by broadband frequency response in the frequency
domain. Most transient events are “impulsive” in nature and therefore have a rather broadband
signature in the frequency domain. Therefore, a fine frequency resolution at high frequencies
is typically not necessary. However, the improved time resolution the wavelet has to offer can be
hugely beneficial when analyzing transients.

3.6.1 Fourier Transform vs Wavelet

Let'stake a closerlook at the results to better understand the differences between FFT and wavelet
analysis. The colormap results for both the FFT and wavelet transformations are created by
stacking a series of tracked results together.
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Figure 3.15: In a wavelet analysis, at low frequencies the frequency resolution is finer. At high
frequencies, the time resolution is finer.

In the case of the FFT, for each time increment an “amplitude vs frequency" result is created.
These results are stacked together to create the colormap.

In Figure 3.16a, each individual calculation of “amplitude vs frequency” in the “waterfall” map
display (left) is shown. These individual calculations are smoothed together to create the “col-
ormap” display on the right.

Alternatively, the wavelet analysis (3.16b) will create an “amplitude vs time" result for each fre-
quency increment (as specified by the wavelets per octave setting). These individual calculations
(as seen in the waterfall display, left) are smoothed together to create the “colormap” display on
the right.

To conclude the comparison between Fourier and wavelet transform, let us analyze a real case:
piston slap noise. Piston slap occurs when the piston inside of a cylinder hits the cylinder wall
during the operating cycle. This causes an audible transient noise.

It may be desired to know the timing of the piston slap. Traditional FFT methods do not make
it obvious when the piston slap occurs. Alternatively, the wavelet analysis highlights the timing
and the frequency content of the piston slap.

In Figure 3.17, time vs pressure data from a microphone near an engine block is displayed (top).
Some of the transient events are highlighted. This data is analyzed in two way: FFT (middle) and
wavelet (bottom).

The wavelet has much better time resolution. The FFT is smeared both in the time domain and
the frequency domain.
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(@) The Fourier transform results in amplitude vs frequency spectra for each increment in time.
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(b) The wavelet analysis results in time versus amplitude results for each frequency increment.

Figure 3.16: Comparison of Fourier and wavelet transform analysis. These results are smoothed
together to create the colormap on the right.
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It is easier to determine the exact moment
of piston slap using the wavelet as there is
less smearing in the time domain.
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Figure 3.17: Fourier and wavelet transform analysis on a piston slap noise. Top: Time history with
multiple transient events. Middle: FFT versus Time analysis does not contain clear indication of

the exact timing and frequency content of the transient events. Bottom: Wavelet analysis shows
both time and frequency content of transients accurately.
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chapter 2
Chapter

Procedures for Analyzing Random Data

The procedures for analyzing the properties of random data may be divided logically into two
categories: the procedures for analyzing individual sample records, and the procedures for an-
alyzing a collection of sample records given the properties of the individual records. Applicable
data analysis procedures for these two categories will be now outlined.

4.1 Procedures for Analyzing Individual Records

An overall procedure for analyzing pertinent statistical properties of individual sample time his-
tory records is presented in Figure 4.1. Note that many of the suggested steps in the procedure
might be omitted for some applications while additional steps would be required for other ap-
plications. Each block in Figure 4.1 will now be discussed.

4.1.1 Mean and Mean Square Value Analysis

The first step indicated by Block A is a mean and mean square value (or variance) measurement
(also called ANOVA, ANalysis Of VAriance). This step is almost universally performed for one or
more of three sound reasons:

@ Since the mean and the mean square values are the basic measures of central tendency
and dispersion, their calculation is generally required for even the most rudimentary ap-
plications.

@ The calculation of a short time averaged mean and mean square value estimates provides
a basis for evaluating the stationarity of the data.

® Mean and mean square value estimates can be extracted from other descriptive properties
(probability density plots, correlograms, and/or power spectra) which might be measured
later. The comparison of directly measured mean and mean square values estimates to the
corresponding estimates extracted from other analyses provides an excellent method for
checking the data analysis equipment or computer programs for correct operation.
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Figure 4.1: General procedure for analyzing individual sample records
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4.1.2 Autocorrelation Analysis

The next suggested analysis is autocorrelation, as indicated by Block B. The autocorrelation func-
tion of stationary data is the inverse Fourier transform of the power spectral density function
(see (3.25)). Thus the determination of the autocorrelation function will technically not yield
any new information over the power spectrum. There might be applications, however, when an
autocorrelogram would present the desired information in a more convenient format. Auto-
correlation functions can be a useful tool for detecting periodicities in otherwise random data.
Furthermore, autocorrelation functions might be computed as an intermediate step in the cal-
culation of power spectral estimates.

4.1.3 Power Spectral Density Analysis

Perhaps the most important single descriptive characteristic of stationary random data is the
power spectral density function, which defines the frequency composition of the data. For con-
stant parameter linear physical systems, the output power spectrum is equal to the input power
spectrum multiplied by the square of the gain factor of the system. Thus power spectra mea-
surements can yield information concerning the dynamic characteristics of the system. The to-
tal area under a power spectrum (that is [ |F(w)|* dw) is equal to the mean square value. To be
more general, the mean square value of the data in any frequency range of concern is determined
by the area under the power spectrum bounded by the limits of that frequency range. Obviously,
the measurement of power spectra data, as indicated in Block C, will be valuable for many anal-
ysis objectives, like detection of periodicities and as an intermediate step in the calculation of
autocorrelation functions.

4.1.4 Probability Density Analysis

The last fundamental analysis included in the procedure is probability density analysis, as indi-
cated by Block D. Probability density analysis is often omitted from a data analysis procedure
because of the tendency to assume that all random phenomena are normally distributed (this
analysis is performed in the so-called Exploratory Data Analysis — EDA). In some cases, how-
ever, random data may deviate substantially from the Gaussian form. If such deviations are
detected by a test for normality, then the probability density function of the data must be mea-
sured to establish the actual probabilistic characteristics of the data. Furthermore, a probability
density function estimate is sometimes used as a basis for a normality test.

4.1.5 Nonstationary and Transient Data Analysis

All of the analysis techniques discussed so far apply only to sample records of stationary data.
If the data are determined to be nonstationary during the qualification phase of the process-
ing, then special analysis techniques will be required as indicated by Block E. Note that certain
classes of nonstationary data can be sometimes be analyzed using the same equipment or com-
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puter programs employed for stationary data analysis. However, the results of such analyses
must be interpreted with caution.

4.1.6 Periodic and Almost-Periodic Data Analysis

If sinusoids due to periodic or almost-periodic contributions are detected in the data during
the qualification phase, then special attention is warranted. Specifically, one of two approaches
should be followed. First, the sinusoidal components might be isolated from the random por-
tion of the data by filtering operations and analyzed separately, as illustrated by Block F. Second,
the sinusoidal components might be analyzed along with the random portion of the data, and
simply accounted for in the results. For example, if a power spectrum is computed for data which
include sinusoidal components, a delta function symbol might be superimposed on each spec-
tral peak at the frequency of an identified sinusoid, and labeled with the mean square value of
the sinusoid. The mean square value can be estimated from the spectral plot by multiplying the
maximum indicated spectral density of the peak by the resolution bandwidth used for the analy-
sis. If this is not done, the physical significance of such spectral peaks might be misinterpreted.

4.1.7 Specialized Data Analysis

Various other analyses of individual time history records are often required, depending upon
the specific goals of the data processing. For example, studies of fatigue damage in mechani-
cal systems usually involve the calculation of peak probability density functions of strain data.
Spectral descriptions other than power spectral density functions are sometimes desired: for
example, the spectra for acoustic noise levels are commonly presented in terms of rms values in
1/1 or 1/3 octave frequency bands. Such specialized analyses, as indicated by Block G, must be
established in the context of specific engineering problem of concern.

4.2 Procedures for Analyzing a Collection of Records

The preceding Section presented methods for analyzing each individual sample record from an
experiment. A procedure for analyzing further pertinent statistical properties of a collection
of sample records is presented in Figure 4.2. As for the analysis of individual sample records
outlined in Figure 4.1, many of the suggested steps in Figure 4.2 might be omitted for some
applications while additional steps would be required for others. Furthermore, the suggested
steps assume the individual records are stationary.

4.2.1 Analysis of Individual Records

The first step is to analyze the pertinent statistical properties of the individual sample records,
as outlined in Figure 4.1. Hence the applicable portions of Figure 4.1 constitute Block A in Fig-
ure 4.2.
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4.2.2 Testfor Correlation

The next step indicated by Block B is to determine whether or not the individual sample records
are correlated. In many cases, this decision involves little more than a cursory evaluation of
pertinent physical considerations. For example, if the collection of sample records represent
measurements of a physical phenomenon over widely separated time intervals, then usually the
individual records can be accepted as uncorrelated without further study. On the other hand, if
the collection represents simultaneous measurements of the excitation and response of a phys-
ical system, the correlation would be anticipated. For those cases where a lack of correlation is
not obvious from basic considerations, a test for correlation among the sample records should
be performed using cross correlation functions or coherence functions.

4.2.3 Test for Equivalence of Uncorrelated Data

If sample records are found to be uncorrelated in Block B, then these records should be tested
for equivalent statistical properties as indicated by Block C. This is an important but often over-
looked step in the analysis of random data. Far too often the analyzed results for a large number
of sample records are presented as individual plots when in fact the results differ only by the
amounts which fall within the acceptable limits of random error. The formal presentation of
such redundant data is usually of no value, and can be detrimental in several ways. First, large
quantities of analyzed data will sometimes tend to overwhelm the user and unnecessarily com-
plicate the interpretation of the results. Second, the unsophisticated user might interpret the
statistical scatter in individual results as physically meaningful differences. Third, more accu-
rate results could be presented for the equivalent data if they were pooled prior of plotting, as
will be discussed in the next Section. Note that for most applications, an equivalence of power
spectra is a sufficient criterion for equivalence of sampled data.

4.2.4 Pooling of Equivalent Uncorrelated Data

The analyzed results for individual sample records which are found to represent equivalent data
should be pooled together as indicated by Block D. This is dome by computing appropriately
weighted averages of the results for the individual records. For example, assume two power
spectral density function estimates were computed from two uncorrelated sample records which
now we found to represent equivalent data. If G;(w) and G5 (w) were the original power spec-
tral estimates with n; and n, sampled points, respectively, a new pooled estimate for the power
spectrum is given by

anl (W) + TLQGQ((,(})
G — 4.1
() ny + ng e
where G, (w) has n, = ny+ny sampled points. Equation (4.1) may be generalized for g estimates

from uncorrelated but equivalent samples as follows

Gp(w) = Zzileci;(w)
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It is clear that the pooling operation produces a power spectrum estimate with a reduced ran-
dom error. However, it should also be noted that the pooling operation generally will not sup-
press the systematic error (bias) in the power spectra estimates. This fact often leads data analyst
to re-process sample records with equivalent statistical properties in a manner designed to re-
duce bias errors. For the case of power spectra estimates, the reprocessing might consist of a
re-computation of power spectral density estimates from the original sample records using a
greatly reduced resolution bandwidth to suppress the bias error at the expense of increase ran-
dom errors. The random errors in the individual estimates are then suppresses by the pooling
operation.

Another approach which is sometimes employed with analog data analysis equipment s to splice
together the original sample records in order to obtain one long sample record for reprocessing.
This procedure can produce acceptable results, but it must be remembered that certain inherent
limitations imposed by the length of the original records still apply. Specifically, if ¢ sample
records each of length 7" are spliced together to form a record of length ¢T', the lowest frequency
which can be defined in the data is still w = 27/T and not w = 27/(¢T’) — see discussion in
Section 5.2.1.

4.2.5 Cross Correlation Analysis

As for the case of autocorrelation and power spectral density functions, the cross correlation and
cross spectral density functions are Fourier transform pairs. Hence the measurement of a cross
correlogram will technically not yield any new information over the cross spectrum. However,
it may present desired information in a more convenient format. An example is the measure-
ment of a simple time delay between two measurement points. Therefore, the cross correlation
analysis is included in the procedure as a separate step indicated by Block E. Note that a cross
correlation estimate can be used as a test for correlation between two individual records, and as
an intermediate step in the calculation of a cross spectral density estimate.

4.2.6 Cross Correlation Spectral Analysis

The most important join measurement for a collection of correlated sample records is the cross
spectral density analysis indicated by Block F. Cross spectral density functions provide infor-
mation concerning the linear relationships which might exist among the collection of sample
records.

4.2.7 Coherence Function Analysis

Block G indicates the calculation of coherence functions based upon power and cross spectral
density estimates. Coherence functions of various types (ordinary, multiple, and partial) are
valuable in several ways. First, they can be used to test for correlation among the collection of
sample records. Second, they constitute a vital parameter in assessing the accuracy of frequency
response function estimates.
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4.2.8 Frequency Response Function Analysis

The ultimate goal in the analysis of a collection of sample records is often to establish linear
relationships among the data represented by the various records. The existence of such linear
relationships can be detected from cross correlation, cross spectral density, or coherence func-
tion estimates. However, a meaningful description of the linear relationship is best provided by
computing the frequency response functions of the relationships, as indicated by Block H.

4.2.9 Other Desired Multiple Analysis

Block I indicates other joint analyses of a collection of sample records needed to satisfy special
data processing goals. Included might be joint probability density and distribution functions.
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Chapter

Temporal Analysis in X-ray Astronomy

Now we will apply all the mathematical tools developed in Part I to real data. In particular we
will explore the techniques that are commonly used in timing studies of X-ray sources. The
regime we will be referring to is that of equidistantly binned timing data, the background noise
of which is dominated by counting statistics. If there are gaps in the data, they are far apart and
the data are not “sparse” in the sense that nearly all time bins are empty. This kind of data are
eminently suited to analysis with FFT techniques, and the discussed methods will be based on
these techniques.

5.1 Power Spectra in X-ray Astronomy

If we indicate with xy, k = 0,1,2,..., N — 1, the number of photons detected in bin & by our
instrument, then the discrete Fourier transform a;, with j = —N/2, ..., N/2 — 1, decomposes
this signal into IV sine waves. The following expressions describe the signal transform pair:

Definition 5.1 (Discrete Fourier transform in X-ray astronomy).

N-1
g N N
a; = Zwk o2miik/N J==% g - 1 (5.1a)
k—0
1 N/2—1
=y Z aj e~ 2mIk/N k=0,1,...,N—1 (5.1b)
j=—N/2

Important Note: please note the difference between this definition and the definition (3.11). The
signs in the exponents in (5.1) are reversed with respect to the ones in (3.11). In X-ray astronomy
it is customary the use of the convention as in Press et al. Accordingly, the prefactor 1/N is
present in the inverse discrete Fourier transform and not in the direct one. The consequence is
that ay will not be anymore the average, but the total number of counts Ny, = >, ). As we
said before, it is only a question of convention.
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If the signal is an equidistant time series of length 7', so that z;, refers to a time t;, = k(T/N),
then the transformis an equidistant “frequency series”, and a; refers toa frequencyw; = 2nv; =
277 /T . The time step is dt = T/ N; the frequency step is ov = 1/7".

Note thata_nje = Y, zpe” ™ = >, xx (—1)* = anys, and that qy is nothing else that the
total number of detected photons ag = ), 1, = Npp.

We have already seen that the Parseval theorem relates the a; and xy:

N—1 1 N/2—-1
i) = N Z Ja;|? (5.2)
k=0 j=—N/2

This implies that there is a relation between the summed squared modulus of the Fourier am-
plitudes and the total variance of the data:

Var(zy) = Y (zx—2)°=) a7 —22) xx+N(z)’

——
Nz

2
1
- St - Y- (S
k k k
G2 1 1
= NZ|%|—N|@0|2
J
Therefore we have

1
Var() = > ayP (5.3)

Adopting the normalization used by Leahy et al. (1983), we will define

Definition 5.2 (Power spectrum).

2 N
Py = ——|a;|? 1=0,1,2,...,— 5.4
J Nph |CL]’ J ) Ly S ) 2 ( )
where Ny, is the total number of photons.
Taking into account that for real data |a;| = |a_;| and that the term at the Nyquist frequency

occurs only once in (5.3), we find the expression for the total variance in terms of P;:

Nph N/2—-1 1
Var(yck) = T Z PJ + 5 N/2 (5.5)
j=1
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Note the difference in the indexing of a; and P;. Often the variance is expressed in terms of the
fractional root-mean-square (rms) variation in the x:

1
N Var(zy,) . N/2-1 )
rms - Non ]521 5+ 5 1 N/2 (5.6)

Sometimes rms is expressed in terms of percentage, and is then called the “percentage rms vari-
ation”. A sinusoidal signal x;, = Asin(27v;t;) at the Fourier frequency v; will cause a spike at
v; in the power spectrum with

1 N?

Pigine = = — A® (5.7)
7,sine

2 Nop
The reason for choosing this apparently rather awkward normalization for the powers lies in the
statistical properties of the noise power spectrum, to be described later.
Finally, let us discuss on relation between the sampled x;, (with Fourier transform ;) and the
continuous function z(t) (with Fourier transform a(v)). It is easy to understand that xy, is given
by a double multiplication by two functions:

Window Function

1 0<t<T
w(t) = { 0 else G-8)

Sampling Function

it) = f 5 (t— k%) 5.9)

k=—00

Therefore in order to obtain the power spectrum of z; we must perform a double convolution
with both the window and the sampling functions. The power spectrum of the shifted window
function is (see Section 2.3.3):

2

i T
W) = |22 (5.10)
vz
The Fourier transform on an infinitely extended periodic series of §-functions is
N & N
I(v) = = Yo (u - k?) (5.11)

k=—o00

The functions w(t) and i(t), together with the corresponding power spectra W (v) and I(v), are
shown in Figure 5.1.

The convolution of a(v) with W (v) causes all features in the power spectrum to become wider.
We have already seen that the convolution with a d-function at 1 causes a shift of the function
by vo: f(v)* (v —1p) = f(v —1p) Therefore the convolution of a(v) with I (v), which is a series
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Figure 5.1: Leff: Obtaining the discrete time series z;, involves the application of the two function w(t) (window function) and
i(t) (sampling function). The bottom panel show the final results. Right: The discrete Fourier transform a; of x, is obtained out
of the continuous Fourier transform by a double convolution. These are the power spectra corresponding to the various Fourier
transforms. Vertical dashed lines indicate the Nyquist frequency
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of §-functions with spacing N/T results in a convolved function a(v) % I(v) that repeats every
N/T frequency units.

For a real signal z(¢) we have, as before, a(—v) = a*(v), so that |a(v)|? = |a(—v)|*: the power
spectrum is symmetric with respect to v = 0. The final result is that the power spectrum of
the convolved function |a(v) x I(v)|? is reflected around the Nyquist frequency vy = $N/T.
This causes features with a frequency exceeding the Nyquist frequency by v, to appear also at a
frequency vn/2 — v, a phenomenon we have already seen and known as aliasing.

From their definitions, is is straightforward to show that the discrete Fourier amplitudes a; are
the values at the Fourier frequencies v; = j/T of the windowed and aliased continuous Fourier
transform aw; (v)

awi(v) = a(v) « W(v) « I(v) = /_ h w(t)w(t)i(t) e*™ dt =

[ee]

e « TN\ omive 4, _ -« T\ omivkr/N G2
/_Oo x(t) kzoé(t—kﬁ>e dt—kzzoa:(kﬁ)e
so that aw;(j/1") = a;. Explicitly performing the convolution of a(v) with /() we finally have
N & N
a; = awi(j/T) = aw(j/T) * a;(j/T) = kZOO aw (vk: - /f?) (5.13)

were we used (5.11) and where v; = j/T and aw = a(v) * W (v).

To summarize: the transition from the continuous Fourier transform to the discrete Fourier
transform involves two operations: windowing, a convolution with the function W (v) which is
essentially a peak with a width 6 = 1/7 plus sidelobes, and aliasing, a reflection of features
above the Nyquist frequency back into the range (0, vx/2). Windowing is caused by the finite
extent, aliasing by the discrete sampling of the data.

In practice, aliasing is not so much of a problem as one might fear, as the data are not really
discretely sampled at intervals 6t = T'/N, but rather binned into time bins with a width §¢. This
is equivalent of convolving with the “binning window”

T
N/T —— <t<-—
b(t) = 2N 2N (5.14)
0 else

before the discrete sampling. Applying the inverse convolution theorem, we can see that the
effect of this on the Fourier transform will be that a(v) is multiplied with the transform of b(¢):

sinvT /N
T /N

This function drops from a value of 1at v = O to O at v = N/T; halfway, at the Nyquist fre-
quency it has the value 2 /7. The effect of this multiplication is a considerable repression of the

B(v) = (5.15)
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high-frequency features that could be aliased back into the frequency range (0, vn/2). This is
understandable: the effect of the binning is nothing else than averaging the time series over the
bin width 7'/ N so that variations with a frequency close to N/7" are largely averaged out.

The problem caused by the windowing can be more serious: the “leakage” cause by the finite
width of the central peak of W (v) and its sidelobes can strongly distort steep power spectra
(they becomes less steeper) and it can spread out §-functions over the entire power spectrum.

5.2 Power Spectral Statistics

In general, signal processing is devoted to detection and estimation. Detection is the task of deter-
mining if a specific signal set is present in the observation, while estimation is the task of obtain-
ing the values of the parameters describing the signal. The process of detecting something in a
power spectrum against a background of noise has several steps. To quantify the power of the
source signal, that is to determine what the power signal P; signa would have been in the absence
of noise, we must consider the interaction between the noise and the signal.

As our starting point we will make the assumption that our signal will be due to the sum of two
independent processes: signal and noise. This corresponds to assume Z, = T signal + Tk noise-
For the linearity of the Fourier transform if b; and c; are the Fourier transforms of , signal and
Tk noise, then a; = b; + ¢;. This means that a similar properties does not apply to power spectra:

la;|* = |b; + ¢;|* = |b;]* + |¢;|* + cross terms (5.16)

If the noise is random and uncorrelated, and if many powers are averaged, then the cross terms
will tend to average out to zero, and we can write down

Pj = Pj,signal + Pj,noise (5.17)

5.2.1 The Probability Distribution of the Noise Powers

For a wide range of type of noise, the noise powers P; ,,oise follow a x? distribution with 2 degrees
of freedom (dof). Indeed, if A; and B; are the Fourier coefficient of the noise signal, then the
Parseval theorem says that P} hoise = A? + BJQ-. But A; and B, are linear combinations of the
xy, therefore if z;, are normally distributed, then the A; and B; do as well, so that P; s, by
definition, is distributed according to the x? distribution with 2 dof.

If the x; follow some other probability distribution, for example the Poisson distribution, then
it follows from the central limit theorem that for “certain” conditions on this other distribution
(i.e. forlarge N), the A; and B; will be approximately normally distributed.

In practice, one finds out that noise powers are nearly always y? distributed, not only for Poisson
noise, but also for many other type of noise.

The power spectrum normalization defined in (5.4) is chosen in such a way that if the noise in the
photon counting data x, is pure Poissonian counting noise, then the distribution of the P;, noise
is exactly given by a y? distribution with 2 dof. Therefore the probability to exceed a certain
threshold power level Py, is given by
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Prob(Pinoise > Pie) = Q(Pael2)  j=1,2,...,N/2—1 (5.18)
where the integral probability of the x? is defined as
]_ & n t
Q(x*In) = —/ te"te2 dt (5.19)
/2T <E> X2
2

where n is the number of dof.
Because the P; ;s follow this distribution, the power spectrum is very noisy; the standard de-
viation of the noise powers is equal to their mean value:

op, = (Pj) =2 (5.20)

Two more or less equivalent methods are often used to decrease the large variance of the P; poise
(see discussion in Section 4.2.4)

(J Rebin the power spectrum, averaging b consecutive frequency bins;

[ Divide the data up into M equal segments, transform these segments each individually
and then average the resulting M power spectra, each normalized according to (5.4). The
Nyp is now the number of photons in each transform.

These two methods, of course, degrade the frequency resolution.

Because the time required to computed the Fourier transform of N data point using an FFT
algorithm is proportional to IV log IV, there is a computational advantage in the second method;
the time saving factor is about 1 + log M/ log N.

For a variable source, a further advantage of the second method is the possibility to follow the
variations of the power spectra as a function of time and/or intensity (see Figure 5.2).

The first method, on the other hand, has the advantage of producing a power spectrum that
extends to lower frequencies. It is of course possible to combine both methods: each power in
the final spectrum will be the average of M b original powers.

Because of the additive properties of the x? distribution, the sum of Mb powers is distributed
according to the x? distribution with 2 Mb dof, so that the probability for a given power P; yoise
in the average spectrum to exceed a Py, will be

Prob( P} noise > Pinr) = Q(Mb P2 MDb) (5.21)

For large M this distribution tends asymptotically to a normal distribution with a mean of 2
and a standard deviation of 2/v/ Mb:

. . Pthr -2
N};gloo PrOb(Pj,nmse > th) - QGauss (m) (5-22)

where the integral probability of the normal distribution is

1 * s
QGauss(x) = E/ e—t /2 dt (5.23)
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Figure 5.2: Dynamic power spectrum of the low mass X-ray binary 4U 1728-34. The color map
shows increasing power in the order green, red, blue, and white. The time increases along the
horizontal axis with a resolution of 1 sec. The total time shown is 32 sec. During the burst (the
yellow line) the source exhibits pulsation at ~ 363 Hz (Strohmayer et al. 1996. ApJ 469, L9)

5.2.2 'The Detection Level: The Number of Trials

Assuming the x? properties of the noise powers (5.21) we can now determine how large a power
must be to constitute a significant excess above the noise.

Definition 5.3 (Detection level). Let usdefine (1 — <) the confidence detection at level Py, as the power
level that has only the small probability e to be exceeded by a noise power.

So, if there is a power P; that exceeds Py, then there is a large probability (1 — ¢) that P; is not
purely due to noise, but also contains signal power P sgnai (this is because of (5.17)).

Because of the way we have built our power spectrum, each P; will be the sum of M/ b power spec-
tra (or less if only certain frequency range in the spectrum is considered). We call the number
of different P, values the number of trials /Vi,;,. The probability to exceed Py, by noise should
have the small value ¢ for all the powers in the frequency range of interest together, so that the
chance per trial should have the much smaller value of

(1—e) Nt v © fore<1 (5.24)
Ntrial
So the detection level Py, is
~—— = Q(Mb Pau|2 MV) 5.2
trial

As an example, if in a power spectrum normalized according (5.4) we find a feature at a level
of 44, the probability of finding a x* > 44 for 2 dof by chance is Q(44]2) = 3 - 107'°. Taking
into account Ny, = 65000 we obtain that the probability of finding our feature by chance is
3-1071% x 65000 = 2 - 107°: so our feature is quite significant!
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Figure 5.3: Confidence detection level at the 90% (continuous) and 99% (dashed) as a function of
the number of trials. The number of independent powers, M b, averaged together due to rebin-
ning of the power spectra by a factor b and averaging M different power spectra increases by a
factor 2 in consecutive curves. The trials are assumed to be independent, so no overlaps between
the b-bins averages are allowed. As an example, for a power spectrum produced by averaging to-
gether 2 “raw” spectra of 4096 bins each and binning up the resulting spectrum by a factor 4 to
produce a 1024-bin average spectrum, the 90% confidence detection level can be read from the
curve Mb =2 x 4 = 8 at Ny, = 1024 to be 5.8.

In Figure 5.3 Py is plotted as a function of N, for various values of Mb and for a confidence
level 0f 90% (¢ = 0.1), and 99% (¢ = 0.01). Note that although P4, increases with the number of
trials Nyia, the increase is relatively slow.

5.3 The Signal Power

Any quantitative statement one can make about the signal power P; gigna1 Will be a statement of a
probability based on the probability distribution of the noise powers P; n,ise because, from (5.17),
Pj,signal = P] - ]Dj,noise (5.26)

Therefore, supposing we have a detection (i.e. for a given j it is true that P; > Py,), then what
is the probable value of the signal power P; signa1 at j?

If we define a “limiting noise power level” Py, that has only a small probability €’ to be exceeded
in one trial
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then, with confidence (1 — ¢’), we can say that, for a given j, P} noise < Pni. Therefore, from
(5.26)

P; signat > P; — Pa1, (1 — €' confidence (5.28)

If no significant power level has been attained by any of the P;, then it is useful to determine an
upper limit to the signal power. The (1 — §) confidence upper limit Py, to the signal power is
defined as the power level for which P; ggna < Pur at (1 — 6) confidence, irrespective of where
this signal power may have occurred.

To determine Py, we define a power level P.,.. thathas the large probability (1—0) to be exceeded
by a given individual P; pese:

(1 =10) = Q(MDb Pexce|2 MD) (5.29)

So a fraction of approximately (1 — ¢) of all powers considered will exceed P in absence of
source signal. We now find the largest observed power Py, in the given frequency interval, and
write

Py, = Prax — Pexce (5.30)

In Figure 5.4 we show the relations between the different quantities defined so far.

5.3.1 Sensitivity to Signal Power

It is sometimes useful to predict the capabilities of a planned experiment in terms of its sensi-
tivity to signal power. The sensitivity level P, can be calculated on the basis of the expected
probability distribution of the noise power as

Psens = Pdet - Pexce (5.31)

If there occurs a P signa Somewhere in the spectrum that exceeds Piens then it will be detected
with (1 — §) confidence (see Figure 5.4).

5.3.2 The rms Variation in the Source Signal

Assuming that the signal power spectrum has been properly separated from the total power
spectrum, we can convert the signal power into the rms variation of the source signal x; using
the expression

b E P gional

j 4 jsigna
rms = [ 5.32
Npl’l ( )

where P; is an M b times averaged power and where N, is the number of photons per transform.
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Figure 5.4: Relations between the detection level Py, the exceeded level Py, the maximum
observed power P, the upper limit Py and the sensitivity level Pyeps.

5.4 Detection of Features

If the signal power of a narrow feature in a power spectrumis Pygna1, then it will drop to Pygna /M b
after the frequency resolution has been degraded by a factor M b by one of the methods described
above. Also the detection level degrades, both because the probability distribution of the noise
powers in the average power spectrum becomes narrower and because the number of trials de-
creases by a factor Mb.

However, in the final analysis the sensitivity level always drops more slowly that 1/Mb, so that
the conclusion is that for detecting a narrow feature in the power spectrum the highest sensitivity is reached
for the maximum possible frequency resolution, that is Mb = 1.

Similar reasoning shows that for a feature of finite width Av the signal power summed over all
frequency bins in the feature will drop proportionally to 1/Mb when the frequency resolution
of the power spectrum is degraded. However, as long as the width of the feature exceeds the
frequency resolution Av > Mb/T,ps, where Ty,s = MT is the total duration of the observation,
the signal power in one frequency bin within the feature will remain constant.

5.5 Power Spectral Searches Made Easy

In this section we collect all previous results into a “how-to” recipe for testing the power spectrum
for a weak signal using equal statistically independent trials

@ Determine the M and b. The optimal choice for M b is that which approximately matches
the expected width of the power spectral feature one desires to detect, Av > Mb/T s (see
Figure 5.5 for the effects of choosing the right b). Note that gaps in the data or the desire
to observe the time evolution of the power spectrum may dictate M.
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Figure 5.5: Effect of choosing the binning size in detecting weak features: the case of the kHz
QPO in4U1728-34. The same data are shown in both the two panels, but the right bin size reveals
the QPO at ~ 800 Hz

@ Calculate the M power spectra normalized according to (5.4). Note that z, is the number
of photons in bin k and /V, is the number of photons in one power spectrum.

® Average the M power spectra.

@ Observe the noise power distribution. Is the noise power spectrum flat? Is its mean level
equal to 22 If so, the noise is probably dominated by Poissonian counting statistics. If not,
it is necessary to find out why.

Determine the detection level.

Check the average spectrum for powers exceeding the detection level.

Q ©®© ©

Quantify the signal power in terms of a detection or an upper limit.

©)

Convert the signal power into the relative rms variation of the source signal, defined as

1
rms = \/ﬁ Xk:(RATEk — (RATE))? (5.33)

and compute the excess variance

1
Excess Variance — \/ rms2 — N Z ERROR% (5.34)
k
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Figure 5.6: Noise classification in astronomical power spectra

© To say more about the signal, we need to model its power spectrum.

5.6 Type of Variability

In the previous Section we were left with the last point in our “how-to” with the problem of mod-
eling a power spectrum. In this section we will deal with the problem of linking the shape of a
power spectrum with the statistical processes that originated the timing variability. In Figure 5.6
we show a schematic power spectrum of an X-ray source displaying characteristic features: a
continuum described in terms of 1/ f noise, a Quasi-Periodic Oscillation (QPO) and a sharp peak
due toa coherent signal (in this case the rotation period of the object). We have already discussed
on the Poissonian level; now we will now analyze in details the other components.

5.6.1 1/f Noise

Definition 5.4 (1/ f noise). 1/ f refers to the phenomenon of the spectral density, S( f), having the form

S(f)=Kf™" (5.35)
where f is the frequency.

1/ f noise is an intermediate between the well understood white noise with no correlation in
time and random walk (Brownian motion) noise with no correlation between increments (see
Figure 5.7). Brownian motion is the integral of white noise, and integration of a signal increases
the exponent a by 2 whereas the inverse operation of differentiation decreases it by 2. Therefore,
1/ f noise can not be obtained by the simple procedure of integration or of differentiation of such
convenient signals. Moreover, there are no simple, even linear stochastic differential equations
generating signals with 1/ f noise.
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The widespread occurrence of signals exhibiting such behavior suggests that a generic math-
ematical explanation might exist. Except for some formal mathematical descriptions like frac-
tional Brownian motion (half-integral of a white noise signal), however, no generally recognized
physical explanation of 1/ f noise has been proposed. Consequently, the ubiquity of 1/ f noise
is one of the oldest puzzles of contemporary physics and science in general.

The case of & = 1, or pink noise, is both the canonical case, and the one of most interest, but the
more general form, where 0 < o < 3, is sometimes referred to simplyas 1/f. 1/ f* noise is of
interest because it occurs in many different systems, both in the natural world and in man-made
processes (see Figure 5.8) from physics, biology, neuroscience, and psychology.

Although 1/f noise appears in many natural systems and has been intensively studied for decades
with many attempts to describe the phenomenon mathematically, researchers have not yet been
able to agree on a unified explanation. Thus, there exist at present several formulations of sys-
tems that give rise to S(f) = K/ f“.

5.6.2 Shot Noise Process

First, let ;. be a Poisson point process. A shot noise process is obtained by attaching to each ¢ a
relaxation function (unilateral exponential function)

N(t) = Noe ™, t>0
and summing on k (see Figure 5.9). The Fourier transform of the shot noise process is (see
Page 28)

| o Ngn
S(f)zjlggof“F(f)‘ >_)\2—(i]-f2

where n is the average rate at which ¢, occur, and T is the interval over which the process is
observed. As we have already seen, the power spectrum of an unilateral exponential function is
a Lorentzian function. For an aggregation of shot noise processes with \ uniformly distributed
on [A1, As], the power spectrum is

( NZn 0 < f <M < N\

Ngnm 1.
S =1 W0a—ay 7 EIER

1
Nen - —
\ f?
If the impulse response function is a power law, Nyz~?, the process is called fractal shot noise,
and the power spectrum is of the form

focK < oK f

k
S(f)%m

When § = 1/2, we obtain S(f) ~ 1/f.
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Figure 5.8: Examples of 1/ f noise observed in both in the natural world and in man-made pro-
cesses from physics, biology, neuroscience, and psychology
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Figure 5.9: The shot noise process

5.6.3 A Clustering Poisson Point Process

Another example based on a Poisson point process is the clustering Poisson. To each Poisson
point, #,, is attached an additional set of points, called a cluster, that occur after it; clusters can
overlap each other. The number of points in each cluster, m, is a random variable whose dis-
tribution, p,,, is concentrated on a finite set of integers. The points in the cluster are spaced
at independent and identically distributed intervals with an arbitrary inter-point distribution.
The power spectral density turns out to be a sum of Lorentzian-like functions. When p,, is pro-
portional to 1/m? we obtain S(f) o< 1/f.

A slightly different formulation is a gating process in which clusters do not overlap. Here, a
Poisson point process is multiplied by a gating process that is 1 on a random interval and then
0 on a random interval and so on. To obtain a 1/f noise let the intervals of 1 be exponentially
distributed and the intervals of O be geometrically distributed, or vice versa. Then roughly the
same computations as just summarized yield the 1/ f approximation. Notice that for the shot
noise processes, the cluster and gating processes, and the AR(l) aggregation (see below), the
power spectral density computation yields a sum of Lorentzian or Lorentzian-like functions.

5.6.4 Recurrence Models

In these models the signal consists of pulses or events
w(t)=ay 6(t—t).
k

Here §(t) is the Dirac delta function, {¢, } is a set of the occurrence times at which the particles
or pulses cross the section of observation, and a is the contribution to the signal of one pulse or
particle. The inter-pulse, inter-event, inter-arrival, recurrence or waiting times 7, = tp1 — lx
of the signal are described by the general Langevin equation with multiplicative noise, which is
also stochastically diffuse in some interval, resulting in the power-law distribution.
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Another recurrence time process generating a power-law probability distribution is a multiplica-
tive stochastic process

_ 2p—1 w
Tk+1—7_k+’}/7_k +0Tk€k7

where the ¢, are independent and identically distributed Gaussian noise, 7y is very small and o,
the standard deviation of the noise, is also small, while 1 represents the degree of multiplicativ-
ity of the process. A particular form of the model is the autoregressive' AR(1) process

(o = T) = (1 =) (1 — T) + o€,

where 7 is the mean of the inter-event intervals.

Notice that the power spectrum of this AR(1) time series process, composed of successive values
of (1, — 7), is proportional to 1/ f2 on a long interval when ~ is small, and thus this power spec-
trum is not the same as that of the point process (whose points ¢, generate the time series) on
that interval.

In such point process models the intrinsic origin of 1/ f noise is in Brownian fluctuations of the
mean inter-event time of the (Poisson-like) signal pulses, similar to Brownian fluctuations of
signal amplitude that result in 1/ f% noise. The random walk of the inter-event time on the time
axis is a property of randomly perturbed or complex systems that display self-organization.

Without enter into the details, other ways of obtaining 1/ f noise are through models of a par-
ticular class of stochastic differential equation and through a reversible Markov chain model.

5.7 Fitting Power Spectra Continuum with Lorentzians

Instead of describing the observed power spectrum continua in terms of 1/ f noise, recently it
has become quite popular a different approach. The power spectrum from X-ray sources like
low-mass X—-ray binaries (LMXB) can be described in terms of a flat-top continuum at low fre-
quencies that becomes steeper at high frequencies, with bumps and wiggles. This continuum
can be fit without the need of power-law components, but as a sum of Lorentzians, some of which
are broad (Belloni et al. 2002).

The power spectra are described as the sum of Lorentzian components L(v) of the form

2
r A 1
) T A2+ (v—1p)?
The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is defined as
P
Xi=c+Y oiXiite
i=1
where ¢1, ..., ¢, are the parameters of the model, ¢ is a constant and ¢, is white noise. The constant term is

omitted by many authors for simplicity. An autoregressive model can thus be viewed as the output of an all-pole
infinite impulse response filter whose input is white noise.
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where r is the integrated fractional rms (over —oo to +00) of each Lorentzian and A is its Half-
Width at Half Maximum (HWHM=FWHM/2). The power spectra are then displayed ina v P,
plot. The frequency vpax at which the v P, attains its maximum is

/ 1
Vmax = Vg + A% = vor/1+ rcy (5.37)

where () = 19/2A is called quality factor. Note that v,,, > v4: the difference is small for narrow
features but becomes large in the case of broad ones. In Figure 5.10 we show an example of such
a fit for two LMXB: XTE 11184480 and 1E 1724—3045.

With this phenomenological modelization it is possible to use a limited number of fit compo-
nents and compare the power spectra of different sources. But what is the physical mechanism
responsible for the observed shape of the power spectra is still an open issue.

5.8 Quasi-Periodic Oscillations (QPO)

Quasi-Periodic Oscillations (QPO) are broad features observed in the power spectra of many X-
ray sources. They are described in terms both of a Gaussian or a Lorentzian shape. As discussed
above, the Lorentzian shape has a physical basis as due to a shot noise process. The QPO can be
therefore characterized by its centroid frequency LC, its width LW, and its normalization LN.
Instead of LN tis customary to give the QPO percentage rms, defined as

I
(RATE)

percentage rms = 100 (5.38)

where [ is the Lorentzian integral, defined as

T
I:§LC><LW

and (RATE) is the source average count rate. Sometimes, for a QPO is given the quality factor

Q, defined as

LC
Q-factor = W (5.39)

In Figure 5.11 we show a Lorentzian fit to a QPO observed in the low-mass X-ray binary and atoll
source 4U 1735-44.

5.9 Analysis of Unevenly Sampled Data

Thus far, we have been dealing exclusively with evenly sampled data. There are situations, how-

ever, where evenly sampled data cannot be obtained (for example, for astronomical data, where
the observer cannot completely control the time of observations).
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Figure 5.11: Typical Leahy normalized power spectra in the energy range of 2—18 keV. (a) The kHz
QPO at 1150 Hz; (b) the complex high-frequency noise and the 67 Hz QPO. From Wijnands et al.
1998. ApJ 495, 139

There are some obvious ways to get from unevenly spaced ¢, to evenly spaced ones. Interpolation
is one way: lay down a grid of evenly spaced times on our data and interpolate values onto that
grid; then use FFT methods. Ifalot of consecutive points are missing, we might set them to zero,
or might be fix them at the value of the last measured point. Unfortunately, these techniques
perform poorly. Long gaps in the data, for example, often produce a spurious bulge of power at
low frequencies.

A completely different method of spectral analysis of unevenly sampled data was developed by
Lomb and additionally elaborated by Scargle. The Lomb-Scargle method evaluates data, and
sines and cosines, only at times ¢, that are actually measured.

Suppose that there are NV data points hy, = h(ty) withk = 0,1,..., N — 1. Then first find the
mean and variance of the data in the usual way

N—-1 N-1

k=1 k=1

h

Definition 5.5 (Lomb-Scargle normalized periodogram).

1| [>u(he — k) cosw(ty — 7‘)] (> (b — ) sinw(ty — 7-)]2
20 { > opcos?w(ty —7) * Spsin®w(ty — 1) } (5.41)

Here 7 is defined by the relation

Py(w)

>, sin 2wy,

= 5.42
> o €OS 2wty 6.42)

tan(2wT) =

The constant 7 is a kind of offset that makes Py (w) completely independent of shifting all the ¢,
by any constant. This particular choice of 7 has another, deeper effect. It makes (5.41) identical
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to the equation that one would obtain if one estimated the harmonic content of a data set, at a
given frequency w, by linear least-squares fitting to the model

h(t) = A coswt + B sinwt

This fact gives some insight into why the method can give results superior to FFT methods: it
weight the data on a “per-time interval” basis, when uneven sampling can render the latter se-
riously in error.

Aswe have seen in Section 5.3, the assessment of the signal significance in the case of FFT meth-
ods is not easy. On the other hand, the significance of a peak in the Py(w) spectrum can be
assessed rigorously.

The word “normalized” refers to the o factor in the denominator of (5.41). Scargle shows that
with this normalization, at any particular w and in the case of the null hypothesis that our data
are independent Gaussian random values, then Py (w) has an exponential probability distribution
with unit mean. In other words, the probability that Py (w) will be between some positive z and
z + dz is exp(—z) dz. It readily follows that, if we scan some M independent frequencies, the
probability that none give values larger than z is (1 — e7*)*. So

Prob(>z) =1— (1 —e )M (5.43)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak in
Py (w) that we do see. A small value for the false-alarm probability indicates a highly signifi-
cant periodic signal.

To evaluate the significance, we need to know M. A typical procedure will be to plot Py (w) as a
function of many closely spaced frequencies in some large frequency range. How many of them
are independent?

Before answering, let us first see how accurately we need to know M. The interesting region
is where the significance is a small (significant) number, < 1. There (5.43) can be expanded in
series to give

Prob(> z) =~ M e * (5.44)

We see that the significance scale linearly with M. Practical significance levels are numbers like
0.05, 0.01, 0.001, etc, therefore our estimate of M need not to be accurate.

The results of Monte Carlo experiments aimed to determine M show that M depends on the
number of frequencies sampled, the number of data points IV, and their detailed spacing. It
turns out that M isvery nearly equal to NV when the data points are approximately equally spaced
and when the sampled frequencies “fill” (oversample) the frequency range [0, Qyyq]. Figure 5.12
shows the results of applying a Lomb-Scargle periodogram to a set of N = 100 data points,
Poissonian distributed in time. There is certainly no sinusoidal signal evident to the eye. The
lower plot shows Py (w) against the frequency v = w/27. The Nyquist frequency that would
obtain if the points were evenly spaced is at vyyq = 0.5 Hz. Since we have searched up to about
twice that frequency, and oversampled the v’s to the point where successive values of Py (w) vary
smoothly, we take M = 2N. One see a highly significant peak at a frequency of 0.81 Hz. This is
indeed the frequency of the sine wave used to create the data (we have to take our word for this!).
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Figure 5.12: Example of the Lomb-Scargle algorithm in action. The 100 data points (upper panel)
are at random times between 0 and 100. Their sinusoidal component is readily uncovered (lower
panel) by the algorithm, at a significance level p < 0.001. If the 100 data points had been evenly
spaced at unit interval, the Nyquist frequency would have been 0.5 Hz. Note that, for these
unevenly spaced points, there is no visible aliasing into the Nyquist range
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Note that two other peaks approach but not exceed the 50% significance level: that is about what
one might expect by chance. It is also worth commenting on the fact that the significant peak
was found above the Nyquist frequency and without any significant aliasing down into the Nyquist
interval. That would not be possible for evenly spaced data.

5.10 Analysis of a Coherent Signal

In X-ray astronomy (and in astronomy in general) the detection of coherent signal is quite com-
mon: for example, we detect periodic signal as due to star pulsations, pulse periods in pulsars,
orbital modulations and eclipses, precession.

Two methods of analysis are used to examine data for evidence for periodic signals: FFT and
epoch folding. In general, both techniques have certain advantages and disadvantages in their
application. There latter are worsened both by the presence of gaps in the data and the large
number of statistically independent frequencies which could, in principle, be examined.

Epoch folding is more sensitive to non sinusoidal pulse shapes encountered in X-ray astron-
omy. Furthermore, the technique is relatively insensitive to randomly occurring gaps in the
data so long as the net pulse phase coverage is reasonably uniform. Epoch folding is, however,
extremely computer time-consuming (even if now the increased CPU power of the current com-
puters makes this issue less important).

The FFT, on the other hand, is extremely efficient. However, the FFT is difficult to interpret in
the presence of gaps in the data (and in this case is better to use the Lomb-Scargle periodogram
technique, as discussed in Section 5.9).

The epoch folding consists in folding the data modulo a trial period and then grouping the ob-
servations according to phase, in order to obtain a high signal-to-noise profile. The x? statistics
is then used to test the high signal-to-noise profile for uniformity. This statistic is x2_; dis-
tributed, where n is the number of phase bins. By varying the trial period we can build a y?
vs period diagram and find out the one that gives the maximum y? (that is, the rejection of the
uniformity hypothesis). Because the x* distribution resembles a triangular distribution (see Fig-
ure 5.13), it can be often well be fit by a Gaussian function, the mean of which may be considered
the “best” coherent period P present in the data. The FWHM of the x? distribution should be of
the order of ~ P? /T, where T is the total elapsed time of the observation.

Of course this method works if there are not intrinsic period variations, like the one due to or-
bital motions. In this case it is necessary to perform a time transformation that makes the signal
coherent. This transformation is called a timing model. The timing model predicts a model pro-
file, or template, that is correlated to the average profile so that a phase offset can be determined.
When multiplied by the instantaneous pulse period, that phase yields a time offset that can be
added to a high-precision reference point on the profile (for example, the edge of the profile)
to create the time-of-arrival or TOA, as shown in Figure 5.14. The general procedure to derive
information on the source from the measured TOAs is depicted in Figure 5.15.

The TOA of the pulse number n is, by definition,

th =to+nP (5.45)
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GX 301-2
Best Period: 680.20 +/—- 0.05 sec
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Figure 5.13: Pulse period of the X-ray binary pulsar GX 301-2 obtained by means of the epoch
folding technique

where ¢ is a reference time (usually the start of the observation). When including intrinsic pe-
riod variations we can perform a Taylor expansion in P and write down

1 . 1 .
tn:t0+nP+§n2PP+6n3P2P+--- (5.46)

Equation (5.46) can be inverted and expressed in terms of the pulse phase ¢ at time (¢ — ¢)

1. 1.
© =0+ folt —to) + §f(t —t0)* + gf(t —to)? 4 (5.47)

where fo = 1/P and f is the frequency. The precision with which a TOA can be determined is
approximately equal to the duration of a sharp pulse feature (e.g., the leading edge) divided by
the signal-to-noise ratio of the average profile. Itis usually expressed in terms of the width of the
pulse features Wrin units of the period P, the pulse period P, and the signal-to-noise ratio SNR
such that or0s o< WiP/SNR. Therefore strong, fast pulsars with narrow pulse profiles provide
the best arrival times.

Before proceeding, it is better to eliminate the very first cause of period variations: the motion
of the Earth and/or of the spacecraft. This is done by referencing the TOAs to a nearly inertial
reference frame: the Solar System barycenter (see Figure 5.16).

The variation of the TOAs due to the orbital motion of the pulsar in the binary system can be
written as an addition term in Equation (5.46) of the form

114 M.Orlandini



Temporal Data Analysis

SYQ., P2Inseaw 943 W] 92I10S 9Y3
U0 UOIRULIOJUI JALIOP 01 2InPadoid [e1auan :S1°S aIndig

suowaydg
wa1s£S 1e[0S

SUOTIDAILIOD
3o0[D

117 1s9¢
0] mﬁmﬁﬁ_mwm

A

solewnlsy Jo11g
+ ‘wreted 317 3529

¥

ourduq 3umniig

SJalowieled
[9POI [enIU]

A

A

AY.2024/2025

SYOL
paInseay

® 01 30adsa1 yam yiys aseyd

asoyg

3

s[goad arejdwan

o3 3urmsea|y 41°S 2an31g

S0

qou0 /¥Sn
@s0ud
]

Qusuayy|

fyisusyul

qouD/wsn

115

M.Orlandini



Temporal Data Analysis AY.2024/2025
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Figure 5.16: The time of arrivals of pulses from celestial objects are referenced to the nearly iner-
tial reference frame of the Solar System barycenter

Qg sin?

F(e,w,T,0) (5.48)

where a, sin i is the projected semi-major axis of the pulsating star orbiting with an inclination
angle i in the binary system. The function F'(e, w, 7, 0) represents the eccentric orbit of the pul-
sar around the center of mass of the binary system, where e is the eccentricity, w the longitude
of the periastron, 7 the time of periastron passage, and § = 27 (t — 7)/ Poy, is the mean anomaly
(see Figure 5.17 for the definition of the orbital parameters). In particular, we have that

sin(v + w)

F(e,w,7,0) = (1 —¢% (5.49)

1+ ecosv

where the true anomaly v can be calculated from the observed mean anomaly 6 using the rela-
tions

tanE: 1+etan§; E —esinE =46 (5.50)
2 1—e 2
The last relation is the so-called Kepler Equation. By fitting the series of TOAs with Equation (5.46)
plus (5.48), we are able to obtain the pulse period P at time ¢y, its time derivatives P and P,
together with the orbital parameters of the pulsar asini, e, w, 7 and P,y. An example of the
Doppler curve, representing the pulse delay times due to the light transit across the binary orbit,
is shown in Figure 5.18 for the X-ray binary pulsar Hercules X-1.

5.10.1 Determination of Neutron Star Masses

X-ray binary pulsars are an important laboratory for measurements of astrophysical quantities.
One of the most important is the determination of the mass of the neutron star orbiting its com-
panion. From the orbital parameters determined in the previous section, the mass function can
be expressed as

472(a, sing)3 apsini\® [ Pop\
M)=—"""1 =11x107" (= = M, 5.51
J(M) G P2, 8 (1lt-s) (1d © G-31
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Celestial body
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Figure 5.17: In this diagram, the orbital plane (yellow) intersects a reference plane (gray). The
intersection is called the line of nodes, as it connects the center of mass with the ascending and
descending nodes
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Figure 5.18: Delays of the TOA in Her X-1 due to its orbital motion and theoretical sine curve
for the 35 day orbital period. The residuals refer to different orbital parameters solutions. From
Staubert et al. 2009
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where G is the gravitational constant. The ratio of the neutron star mass ), to that of the com-
panion star M, is obtained as

M, K, PuV/1-¢

<
I

M, 2ma, sint
K. Py Q. Sin 4 -1
= 4.6x107%V1 —e2
8 ‘ <1Kms_1>(1d)(1lt—s)

where K. is the semi-amplitude of the Doppler velocity curve of the companion star as measured
from optical observations.

Because in the Doppler fitting we are able to determine only the product a, sini, we need an
independent estimate of the inclination angle i. This can be obtained if the source shows X-ray
eclipses. Indeed, the average radius of the companion star R, is related to the eclipse half-angle
O, as

1/2

R.=a ((3082 i + sin? i sin® @c) (5.52)

where a = a, + a. is the separation of the centers of mass of the two stars in the binary system.
Putting the things together, we can estimate the inclination angle in terms of the critical Roche-

lobe radius RL as
[1 _ 62 <_L)2
a

cos O,

1/2

sing = (5.53)

where 8 = R./Ry. With all this information it is possible to resolve the binary system and derive
an estimate of the mass of the neutron star. All measured masses are consistent at 40 with a
maximum mass of 1.5-1.65 M.
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Appendix

Examples Shown at the Blackboard

2.1 Calculation of Fourier Coefficients — Page 15

Constant Function

f(t)

flt)y=1 for —T/2<t<+4T/2

N
+
NI
-~V

From the definitions of the Fourier coefficients A, (2.8) and Ay (2.9) we have

+T/2 +T/2
= —/ t) coswyt dt = —/

T/2 T/2

+T/2 +T/2
= —/ cos wyt dt = —/

T/2 T/2
=0 fork #0 =1

From the definition of the Fourier coefficients B}, (2.10) we have
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2t
1—1—7 for —T/2<t<0

2 +T/2
B, = —/ f(t)sinwgt dt
T J 1)
2 +T/2
= — / sin wyt dt
T J 7/
= 0 forall &
Triangular Function
A
f(t)
ft) =
_% _|_% t

From the definition of the Fourier coefficient A, (2.9) we have

1 +7T/2

- flt)dt

T/—T/2

/0 2t 1 [T 2t
= 1+ 25 ) dt + = 1— =) at
TGRS TGS
()

T Jo T

2, 1" _2[T_T]_ 1
T T, T2 4r| 2
1

2

From the definition of the Fourier coefficient A;, (2.8) we have
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2t
1—7 for0 <t < +T)/2
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A, = /0 1+2t cos 2kt dt—l—/+T/2 1—2t CoS 2kt dt
b 1 T T . T T

2
T

2 /0 2mkt 2 /+T/2 2mkt\ s

= T s COS T T ; COS T

g

=0

4 [0 . orkt " 4 +T/2t orkt "
e COS | — —_ — COS | —
% ) 12 T T2 Jo

8 /+T/2t orkt 0
= —— COS | —
T2 J, T

The last integral can be solved by parts:

T . 1
r cosaxdr = —sinax + — cosax
a a

Therefore we finally have
2(1 — cos k)
m2k?
Remember that By, = 0 because f(t) is an even function. We can rewrite the Ay coefficients in
the form

A =

(1
3 fork =0
A, =
k 52 for k odd
w for k even, k # 0
In formula, we have
1 4 1 1
f(t) = 3 + ) (Coswt—i- §cos?>wt—l— 2—5cos5wt+-..)

This is the function plotted in Figure 2.2 at page 16.
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2.2 Shifting rules — Page 21

Triangular function with average equal to zero

A

for —T/2<t<0

|
v
+
v
DN | —

+

for0 <t < +4T/2

N | —
NIR SR

This function is obtained by subtracting 1/2 from the “normal” triangular function described in
the previous example. By applying the linearity theorem (2.19), its Fourier coefficients A, remain
the same, while the coefficient A, becomes zero. Therefore we have

) = - £+ cos 3wt + — cos 5wt +
= — | COSwW — COS oW — COS oW s
2 9 25

Quarter period shifted triangular function
Now take the previous triangular function (with average equal to zero) and shift it to the right

bya = T/4, thatis

f(t)

T
2

fnew = fold(t - T/4)

o ol

So the new coefficients can be calculated from the first shifting rule (2.20)

Onew = (oM g-iwa a=T/4 ol gimh/2
2 k. . 7wk
= 212 (COS 7 — 7 Sin 7)
2

= L (c)®ED2 podd

m2k?
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Because C"9" = —Cp" it follows that A;, = 0. Using the identity i B, = C_; — C}, we have

4

By, = m2k2

(—1)®=D/2  kodd

Half period shifted triangular function
ft)

A
’
’
’
’
’
’
.
’
’
\ ’
\ .
\ | L
v >
I \ I ’
\ t ’
\ ’
\ ’
\ ’
\ ’
. ’
\ ’
\ .
\ ’
\ ’

Again, by applying the first shifting rule (2.20) with a = T'/2 we have

fnew = fold(t - T/2)

N I
¢"
SIS

a=T/2

new old —iwga old —imk
Cy" = Cfe Crle

= (cosmk — i sinmk)
77
2
= k odd

m2k2

So we have only changed the sign (indeed, the function is now upside-down).
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2.3 Second Shifting Rule — Page 22

Constant function
ft)y=1 for —T/2<t<+T/2

In this case we already know that A, = J; 0, or Ay = 1, and all the other A, and B, are null.
Now, let us multiply the function f(¢) by coswt, thatis @ = 1. From the second shifting rule
(2.21) we have

ARV = 610 - Ay = 1 (all others are zero)
By using the Cj, coefficients we have

1 1
Ci==- O ==
179 179

So, we have shifted the coefficient by a = 1 and gone halves. This example demonstrates that the
frequency w = 0 is as good as any other function. If we know, for example, the Fourier series of
a function f(¢) and consequently the solution for the integrals of the form

+T/2 '
/ f(t) e ™kt dt

T/2

then we have already solved, by means of the second shifting rule, all integrals for f(¢) multiplied
by sin wt or cos wt: it is sufficient to combine phase factor ¢’?7*/” with phase factor e~’,

Triangular function multiplied by cosine

Our “standard” triangular function

2t
1+T for —T/2<t<0

f(t) = o
1—? for0 <t < +4T/2

will be now multiplied by cos(7t/T'), i.e. we shift the coefficients C by a = 1/2. The new func-
tion is still even, and therefore we have only to compute the A because the By are null:

AHCW — Azlj"a + Azlia
k 2
We have already computed the A9:
2(1 — cos k)
old __
A= w2k?

therefore we have
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1[2(1—cosm(k+1/2)) 2(1—cosn(k—1/2))

AT =3 72(k + 1/2)2 m2(k — 1/2)?
1 —cosmkcos(m/2) + sinmksin(7/2)
B m2(k +1/2)2
1 — cosmk cos(m/2) — sin 7k sin (7 /2)
w2 (k —1/2)?
B 1 1
 m2(k+1/2)2 * m2(k —1/2)2
g = A 20— cos(r/2) _ 4

2 2712(1/2)2

The new coefficients are therefore

4
AO - P
P Lo, 1 N _ 41 1) _ 410
o \(3/22 T (1/22) w2 \9 1) w29
P Lo, L\ _ 41 1y 4
2 w2 \(5/22 " (3/2)2) w2 \25 " 9) w2225
1

Lo L \_ 41 1y 4T
ST o \(7/2)2 T (5/2)2) w2 \49 " 25)  #21225
A comparison of these coefficients with the one without the cos(nt/T") weighting shows what
we have done

3

| w/o Weight with Weight

N

In Figure A.1we show the triangular function, the weighting cosine function, and their product.
We can make the following observations:

O The average A, got somewhat smaller, as the rising and falling flanks were weighted with
the cosine, which, except for ¢t = 0, is less than 1.
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A A y

0.6 0.6 0.6

t % % k3
Figure A.1: The triangular function (left); The weighting function cos(nt/T") (center); Their product
(right).

1 We raised coefficient A; a bit, but lowered all following odd coefficients a bit, too. This is
evident straight away, if we convert:

U S |
k+1)2  (2k—172 k2

— 8k — 10k +1>0

This is not valid for £ = 1, yet all bigger k.

(1 Now we have been landed with even coefficients, that were null before.

We now have twice as many terms in the series as before, though they go down at an increased
rate when k increases. The multiplication by cos(nt/T’) caused the kink at ¢ = 0 to turn into a
much more pointed “spike”. This should actually make for a worsening of convergence or a slower
rate of decrease of the coefficients. We have, however, rounded the kink at the interval boundary
+7/2, which naturally helps, but we could not reasonably have predicted what exactly was going
to happen.
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2.4 Approximating the triangular function — Page 24
The triangular function
1—|—¥ for —T/2<t<0

f(t) = o
1—? for0 <t < +4T/2

has the mean squared “signal”:

1 +T/2 ) 2 +T/2 2 +T/2 ot 2 1
= t)dt = — 2(t)dt = = 1+=) dt==
T/—T/Qf() T/o ) T/o <+T> 3

The most coarse approximation is

1 , 11
The next approximation results in
1 4 , 1 1 1/4Y?
51:§+PCOSQ}$ - (5125—1—5(;) = 0.0012...

For 02 we get 0.0001915. .., the approximation of the partial sum to the “triangle” quickly gets
better and better.
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1 4 f(t) 2 7 F(w)

Figure A.2: The bilateral exponential function (leff) and its Fourier transform (right)

2.5 Fourier Transformation of Relevant Functions — Page 28

The bilateral exponential function

fO) =

Its Fourier transform is

2T

+o00o +o00
F((U) = / e_‘t|/7' e—ZUJt dt = 2/ e—t/T coswt dt = W
- 0 weT

o

As f(t) is even, the imaginary part of its Fourier transform is null. The Fourier transform of the
bilateral exponential function is a Lorentzian. Both functions are shown in Figure A.2.

Unilateral exponential function

Its Fourier transform is
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+o0
Flw) = / e Me ™ dt
0

e~ (Aiw)t |10

—(A +iw)
1
A+ iw

A LW
Ntw? A+ a2

0

F(w) is complex, as f(t) is neither even nor odd. We now can write the real and the imaginary
parts separately. The real part has a Lorentzian shape we are familiar with by now, and the imag-
inary part has a dispersion shape.

Please note that | F'(w)| is no Lorentzian! If we want to “stick” to this property, we better repre-
sent the square of the magnitude: |F'(w)|? = 1/(\? + w?), that is a Lorentzian. This represen-
tation is often also called the power representation: | F(w)|? = (real part)* + (imaginary part)®.
The phase goes to O at the maximum of | F'(w)|, i.e. when “in resonance”.

Warning: The representation of the magnitude as well as of the squared magnitude does away
with the linearity of the Fourier transformation!

Finally, let us try out the inverse transformation and find out how we return to the “unilateral”
exponential function (the Fourier transform did not look all that “unilateral”!):

1 [T AN—iw .,
t - +iwt d
) 21 J_oo A2+ w? c “

1 T coswt o0 sin wt
= — <2\ ——d 2 —d
27r{ /0 A2 4 w? W /0 A2 4+ w? w}

1 >
= {EG’M + Ze"”'} where + fort >0 is valid
2 — else
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2.6 Convolution — Page 34

Gaussian frequency distribution

Let us assume we have f(t) = coswyt, and the frequency wy is not precisely defined, but is
Gaussian distributed:

What we are really measuring is

- oo 1 1 w2
f(t) = / e 2.2 cos(w — wp)t dw A.D)
oo OV2T

i.e. a convolution integral in wy. Instead of calculating this integral directly, we use the inverse of
the Convolution Theorem (2.55), thus saving work and gaining higher enlightenment. But watch
it We have to handle the variables carefully. The time ¢ in (A.1) has nothing to do with the Fourier
transformation we need in (2.55). And the same is true for the integration variable w. Therefore,
we rather use t, and wy for the variable pairs in (2.55). We identify:

1 _1wg
Flwo) = Ry 2o

1
%G(wo) = coswyt

|

The inverse Fourier transform of F'(wp) and G((wy) are

]. 1 2,2
to

flto) = S-e
PR {5(to2—t)+6(t02+t)]

Finally we get:

h(to) = Lot {5(7502— t) N 5(t02+ t)}

Now the only thing left is to Fourier transform h(ty):

+o0 - 4
f(t) = H(w) = / L [5(2502 t) n 5(15024- t)] et gt

[e.9]

1,242
= e 27" coswpt
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Now, this was more work than we had originally thought it would be. But look at what we have
gained in insight!

This means: the convolution of a Gaussian distribution in the frequency domain results in expo-
nential “damping” of the cosine term, where the damping happens to be the Fourier transform of
the frequency distribution. This, of course, is due to the fact that we have chosen to use a cosine
function (i.e. a basis function) for f(t). P(w) makes sure that oscillations for w # wy are slightly
shifted with respect to each other, and will more and more superimpose each other destructively
in the long run, averaging out to O.

Lorentzian frequency distribution
If we convolute our signal f(¢) = cos wyt with a Lorentzian distribution

P(w)za 1

T w2+ o2

then, by following what we have done previously with the Gaussian, we have

- e 1
ft) = = cos(w — wo)t dw

TSt —1) S(to+1)
oto
‘ { > T 2

f(t) = e 7" coswpt

This is a damped wave.

Gaussian convoluted with a Gaussian

We perform a convolution of a Gaussian with o; with another Gaussian with o,. As the Fourier
transforms are Gaussians again — yet with o7 and o3 in the numerator of the exponent — it’s
immediately obvious that 02 | = o7 + 03. Therefore, we get another Gaussian with geometric
addition of the widths o; and 0.
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3.1 Discrete Fourier Transformation — Page 56

Constant function with N = 4

fi=1 fork=0,1,2,3

For the continuous Fourier transformation we expect a d-function with the frequency w = 0.
The discrete Fourier transformation therefore will only result in F{y # 0. Indeed, by using (3.11)

— or even a lot smarter using (3.8):

1
Fg - 14: 1
F1 - O
F, =0
F; = 0

As {f;} is an even series, { F}; } contains no imaginary part.

Cosine functionwith N = 4

We get, using (3.11) and W, = i

Sine function with N = 4

136

Jo =

i =0
fo = —1
f3 = 0

0 (this is the average)
J+ (D)) =3
(14 (=1)(1)) =0

(1+ (=1)(-1)) =

e L N N e

1
2
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Jo = 0
i =

fo = 0
fs = -1

We get, using (3.11) and W, = i

Fy = 0 (thisis the average)
Fo= (it (D)= —
Fy = 2(1(-1) + (~1)(~1)) =0
By = (0 +(-)(=) =2
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Discrete Fourier Transform: Shifting Rules

3.2 Shifted cosine with V = 2— Page 57

First, let us compute the DFT for the cosine function:

{fit = {0,1}  or
fr = %(1—00871‘/{2) k=01

WQ = 6”2—1

1
By = 50+1)=

= %(0—1—1(—1)):——

{F} = {%,—%}

Now we shift the input by n = 1:

{F™} = {10} or
1
fr = 5(1—1—0057?/{;) k=01

: 1 1 11
F_sh1fted _ “wolx0 Zpp-ixi\ ) -
{ i } {2W2 ) 2W2 27 2

3.3 Modulated cosine with V = 2 — Page 58

We want to modulate the input with Wy, with n = 1. From its definition W, * = (—1)7%,
therefore

{fiy = {0,-1}  or
1
fr = 5(—1+cos7rk) k=01
shifte 11
(E) = (Fod={-53)
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3.4 Nyquist Frequency with N = 8 — Page 61

T . T . T . I . ] (/) =1{1,0,1,0,1,0,1,0}

{gk} = {47 27 O’ 07 07 07 07 2}

Py & Py & Py >
A4 @ @ @ A4 >

The “resolution function” { g; } is padded to N = 8 with zeros and normalized to 3°;_, = 8. The
convolution of { ;. } with { g, } results in:

11111111
hi}=<9=,=,=,=,=,=,=, =
e} {2’ 2272222 2}
meaning that everything is “flattened”, because the resolution function (here triangular shaped)
has a full half-width of 2At and consequently does not allow the recording of oscillations with
the period At. The Fourier transform therefore is Hy, = 1/d . Using the convolution theorem
(3.1) we would get

1 1
F;}=4-,0,0,0,-,0,0,0
{]} {27a772777}

The result is easy to understand: the average is 1/2, at the Nyquist frequency we have 1/2, all the
other elements are zero. The Fourier transform of { gy } is

G'0:1 Gi=<-+ G3:

G4:O G5: - G7: -+

=[S

N = N =
SR
N~ N~

For the product we get H; = F;G; = 1/2,0,0,0,0,0, 0, 0, like we should for the Fourier trans-
form. If we had taken the Convolution Theorem seriously right from the beginning, then the
calculation of G, (average) and GG, at the Nyquist frequency would have been quite sufficient, as
all other F; = 0.

The fact that the Fourier transform of the resolution function for the Nyquist frequency is 0,
precisely means that with this resolution function we are not able to record oscillations with the
Nyquist frequency any more. Our inputs, however, were only the frequency 0 and the Nyquist
frequency.
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3.5 The Sampling Theorem with N = 2 — Page 65

Let us star with the shifted cosine function

{fe} = 10,1}

We expect

11 » Oyt
f(t) = 5 1 gcos Ongqt = cos —

The sampling theorem tell us

B sin Qnyq (t — kKAL)
ft) = Z Jr QNyqyjf—kAt)

Wlth fr = Ok even (With periodic continuation)

sin Qnggl o= Sin Qnyq(t — 21AL) N  sin Qnyq(t + 21AT)
Onyal S Oyt —21A1) = Qnyg(t + 20A)
with the substitution k = 2[

sin Qg {511127?(2& l) sin27r(ﬁ+l)}
Onyqt 21 (5% — 1) 21 (557 + 1)

with QNqut =T

_osinOnggt 1 o= (57 + 1) sin Qnygt + (557 — 1) sin Oyt
- QNyqt 2 =1 (2At + l)(m —1)

~sin Onygt sin Qyyqt 2t > 1

T Oyt 2 2At lz:; (55) — 12

o sin QNyqt (QNyq >
= Onyqt 1+ Z (QNyqt) 2
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sin Oyyqt gt cot T Nyqt
Onyqt 27 21

1 cos(Qnyqt/2)

2 sin(Quyqt/2)

= sin Oyyqt

, 1 cos(Qnyqt/2)
= 2 SIH(QNyqt/Q) COS(QNyqt/2> 5 W
yq

= cos’(Qnyqt/2)

Please note that we actually need all the summation terms of k from —oo to +00. If we had taken
only K = 0and k = 1 into consideration we would have obtained

sin QNyqt sin QNyq (t — At) sin QNyqt

) Onyql Onyq(t — At) Onyqt

which would not correspond to the input of cos? (Qyyqt/2). We still would have, as before, f(0) =
1 and f(kAt) = 0,but for 0 < t < At we would not have interpolated correctly, as sinx/x
decays slowly for large x while we want to get a periodic oscillation that does not decay as input.
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3.6 Fast Fourier Transform of the Saw-tooth — Page 72

The case N = 2
O
fO - 07 fl =1
® © >
Its “normal” Fourier transform is
WQ = 61'7r =—-1
1 1
Fh, = =(04+1)=-=
0 2( +1) 5
Fo= S0+1xmwpl) =1
L) D)
Its FFT is
fio=0 evenpart — Fio=0
foo=1 oddpart - Fpp=1 M=1
From (3.47) we get
1 1
Fy = - |Fo+tFBoW) | ==
2 ~ 2
=1
1 1
F, = = (Fig— FW))=—=
1 5 ( 1,0 2,0 2) 5
This really did not save all that much work so far.
Thecase N = 4

{fk} = {07 1,2, 3}
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The “normal” Fourier transform gives

W, = 67,27r/4 — GZT(/Q =

1 3
0 10+14+243) =2
1
Fio= V7207 43 =
1 1
5 = Z(W;2+2W4‘4+3W4—6):—(—1+2—3):—§

12+371¢
i i) 2 2

Using 2 subdivisions, for the first subdivision the FFT gives us

PN

1
By = Z—l(Wf’ +2W, 0 4+ 3W,Y) =

N =4 {fi} = {0,2} even
N=2 {f2} ={1,3} odd

For the second subdivision we get

fii=0 even =Fi

fio=2 odd = Fiap

faa=1 even = Fy

fao=3 odd = Fya
Using (3.47) this results in (j = 0, M’ = 1)

upper part lower part
1 1. 1 1
F! = — —F —Fi10—=-F ={1,-1
1k 54110 + 541200 5110 = 5120 {1,-1}
1 1 1 1
Fy = — —F — — —F ={2 —1
2% {2 21,0 T 51220, 51210~ 5 2,2,0} {2,-1}

And finally, using (3.47) once again

( 1 3
Fo = §(F1,0 + Fyp) = 5
upper part — - 1 . B 1 . . 1 1
\ 1—5( 1,1+ Faq 4)—5 _+(_)XZ ——§+—
( 1
F2—§(F10—F2,0)———
lower part — 1 X 1 1 1
F=—(Fy—FW) == (-1 (-1)x~)=—x—2
| Fo= 5 (Fia = Bl 2( ( )xz) 2 2
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Appendix

Practical Session on Timing Analysis

Many of the following examples are taken from a course on timing analysis given by Biswajit Paul
during the first ASTROSAT Workshop. I really thank Biswajit for letting me use his material and
passing me the data files.

In the following, we will use text in typewriter font for indicating the program output, while
the user input will be in red typewriter.

B.1 First Look ata Light Curve

The XrRONOSs package, part of the more general HEADAS software, is formed by many programs
that address specific tasks on temporal analysis (the list of all the tasks can be obtained giving
the command fhelp ftools). One of the very first steps in performing a temporal analysis is
the quick look of the data. The 1curve task plots one or more sequences of time-ordered data
(thereafter “light curve”).

orma> lcurve
lcurve 1.0 (xronos5.22)
Number of time series for this task[1] 1

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_long.lc
Series 1 file 1:cenx-3_long.1lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10510 19:57:03.562
No. of Rows ....... 1873744 Bin Time (s) ...... 0.1250

Right Ascension ... 1.70313293E+02 Internal time sys.. Converted to TJD
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Declination ....... -6.06232986E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (’-’ for default window) [-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10510.83129123185 (days) 19:57: 3:562 (h:m:s:ms)
Minimum Newbin Time  0.12500000 (s)

for Maximum Newbin No.. 2638849

Default Newbin Time is: 645.00587 (s) (to have 1 Intv. of 512 Newbins)

Type INDEF to accept the default value

Newbin Time or negative rebinning[3600] 3600

Newbin Time ...... 3600.0000 (s)
Maximum Newbin No. 92

Default Newbins per Interval are: 92
(giving 1 Interval of 92 Newbins)

Type INDEF to accept the default value

Number of Newbins/Interval[215] 92

Maximum of 1 Intvs. with 92 Newbins of 3600.00
Name of output file[default] test

Do you want to plot your results?[yes] yes

Enter PGPLOT devicel[/xw] /xw

92 analysis results per interval

Intv 1 Start 10507 0:49:27
Ser.1 Avg 3632. Chisq 0.7848E+08 Var 0.1568E+07 Newbs.

(s)

84

Min 224.6 Max 5219. expVar 1.423 Bins1873744

PLT> line step

PLT> plot

PLT> cpd cenx-3_long_lc.ps/cps
PLT> plot

PLT> quit

In the top panel of Figure B.1 we show the light curve of the XTE/PCA observation, with data
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rebinned at 3600 s (that is, each bin corresponds to one hour of data). The “hole” is due to the
eclipse of the X-ray pulsar by the optical companion.

By running again the 1curve program with a binning time 0f 0.125 s (the original time resolution
of the data) we can see the single pulses, as shown in the bottom panel of Figure B.1.
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CEN_X-3
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Figure B.1: Light curve of the X-ray binary pulsar Cen X-3 as observed by the PCA instrument
aboard XTE. Top: data have been rebinned at 3600 s, in order to see the long-term behavior of the
source (in this case the eclipse). Bottom: data have been rebinned at 0.125 s, in order to observe
short-term variability, like the 4.8 s pulsation.
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B.2 Finding a Periodicity by Fourier Analysis

We know that a periodic signal is seen as a sharp spike in power spectrum. We will compute the
Power Spectral Density (PSD) on the Cen X-3 data in order to obtain its period. To this goal we
will use the XRONOs command powspec.

orma> powspec
powspec 1.0 (xronosb.22)

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_pca.lc
Series 1 file 1:cenx-3_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10507 02:24:27.559
No. of Rows ....... 60000 Bin Time (s) ...... 0.1250

Right Ascension ... Internal time sys.. Literal
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No
Selected Columns: 1- Time; 3- Y-axis; 4- Y-error; b5- Fractional exposure;
File contains binned data.
Name of the window file (-’ for default window) [-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10507.10031897535 (days) 2:24:27:559 (h:m:s:ms)

*xxx Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time  0.12500000 (s)
for Maximum Newbin No.. 60000

Default Newbin Time is:  1.0000000 (s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.0005] 0.125

Newbin Time ...... 0.12500000 (s)

Maximum Newbin No. 60000

Default Newbins per Interval are: 8192

(giving 8 Intervals of 8192 Newbins each)
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Type INDEF to accept the default value

Number of Newbins/Interval[4096] 8192

Maximum of 8 Intvs. with 8192 Newbins of 0.125000 (s)
Default intervals per frame are: 8

Type INDEF to accept the default value

Number of Intervals/Frame[16] 7

Results from up to 7 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, 0 nomne) [0] O

Name of output file[pippo] test

Do you want to plot your results?[yes] yes

Enter PGPLOT devicel[/XW] /xw

4096 analysis results per interval

Intv 1 Start 10507 0:19:27
Ser.1 Avg 1006. Chisq 0.3487E+06  Var 0.3427E+06 Newbs. 8192
Min 248.0 Max 3704. expVar 8050. Bins 8192
Power spectrum ready !
Intv 2 Start 10507 0:36:31
Ser.1 Avg 1892. Chisq 0.8259E+06  Var 0.1526E+07 Newbs. 8192
Min 416.0 Max 8544. expVar 0.1514E+05 Bins 8192
Power spectrum ready !
Intv 3  Start 10507 0:53:35
Ser.1 Avg 2701. Chisq 0.1234E+07  Var 0.3254E+07 Newbs. 8192
Min ©544.0 Max 0.1116E+05expVar 0.2160E+05 Bins 8192
Power spectrum ready !
Intv 4 Start 10507 1:10:39
Ser.1 Avg 3868. Chisq 0.1730E+07 Var 0.6535E+07 Newbs. 8192
Min 672.0 Max 0.1471E+O5expVar 0.3094E+05 Bins 8192
Power spectrum ready !
Intv 5 Start 10507 1:27:43
Ser.1 Avg 4722. Chisq 0.1111E+07 Var 0.8197E+07 Newbs. 5120
Min 1176. Max 0.1633E+05expVar 0.3778E+05 Bins 5120
Power spectrum ready !
Intv 6 Start 10507 1:54:23
Ser.1 Avg 4806. Chisq 0.2097E+07  Var 0.9842E+07 Newbs. 8192
Min 944.0 Max 0.1780E+05expVar 0.3845E+05 Bins 8192
Power spectrum ready !
Intv 7  Start 10507 2:11:27
Ser.1 Avg 4696. Chisq 0.1486E+07 Var 0.8946E+07 Newbs. 6240
Min 928.0 Max 0.2020E+0b5expVar 0.3757E+05 Bins 6240
Power spectrum ready !
PLT> r x 0.05 5
PLT> log x on

o
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PLT> pl

PLT> cpd cenx-3_pca_psd.ps/cps
PLT> pl

PLT> cpd /xw

PLT> q

The PSD shows clearly two sharp peaks: the first corresponds to the pulse period, while the sec-
ond corresponds to the first harmonic. In Figure B.2 we show the Cen X-3 PSD.

A Gaussian fit to the first Fourier peak gives a centroid frequency of 0.207970 0003 Hz, corre-
sponding to a pulse period of 4.81007) 055 s. The first harmonics is at 0.4159 4 0.0001 Hz, cor-
responding to 2.4044 + 0.0002 s. Note that the ratio between the two frequencies is 2.0005 +
0.0011.

CEN_X—-3
Bin time: 0.1250 5

Fower
&x107 ax10°
T T
L

4x10%
T
L

7%107
T

) |

0.1 1
Fraquency (Hz)

Start Time 10507 00159:27:625 Stop Time 10807 2:24:27:500

Figure B.2: Power spectrum of the XTE/PCA observation of Cen X-3. The fundamental and the
firstharmonic of the 4.8 s period are clearly visible. We used a logarithmic scale for the frequency
for cosmetic purpose.
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B.3 Finding a Periodicity by Epoch Folding

Instead of using the Fourier spectrum for obtaining the pulse period of Cen X-3, we will the so-
called epoch folding technique. With this technique we build a template with a trial pulse period
and cross-correlate this template with our light curve. Then we vary the trial pulse period until
we obtain the better match with the original data. The ef search program performs this task.

orma> efsearch
efsearch 1.1 (xronosb.22)

Ser. 1 filename +options (or @file of filenames +options) [] cenx-3_pca.lc
Series 1 file 1:cenx-3_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10507 02:24:27.559
No. of Rows ....... 60000 Bin Time (s) ...... 0.1250

Right Ascension ... Internal time sys.. Literal
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No
Selected Columns: 1- Time; 3- Y-axis; 4- Y-error; b5- Fractional exposure;
File contains binned data.

Name of the window file (’-’ for default window) [-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10507.10031897535 (days) 2:24:27:559 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value

Epoch format is days.
Epoch[11723.00000] 10507.00000

Period format is seconds.

Period[15.8] 4.8

Expected Cycles .. 1562.50

Default phase bins per period are: 8
Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.30000000 (s)
Maximum Newbin No. 25000
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Default Newbins per Interval are: 25000
(giving 1 Interval of 25000 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[782811] 25000

Maximum of 1 Intvs. with 25000 Newbins of 0.300000 (s)
Default resolution is 0.1536000000E-02

Type INDEF to accept the default value
Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128

Type INDEF to accept the default value
Number of periods to search[4096] 4096
Name of output file[pippo] test
Do you want to plot your results?[yes] yes
Enter PGPLOT devicel[/XW] /xw

4096 analysis results per interval

Period : 4.809 dp/dt : 0.000
Intv 1 Start 10507 0:19:27
Ser.1 Avg 3257. Chisq 0.7471E+07 Var 0.3719E+07 Newbs. 16
Min 1177. Max 7050. expVar 7.966 Bins 52320

PLT> cpd cenx-3_pca_efs.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.3 we see the pulse period value that gives the better match (measured by a y? test)
between data folded at a trial period and the original data.

Once we know the pulse period, we can extract the average pulse profile by folding our data with
the best trial value. The efold program performs this task on the light curve.

orma> efold

efold 1.1 (xronosb5.22)

Number of time series for this task[1] 1

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_pca.lc

Series 1 file 1:cenx-3_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10507 02:24:27.559
No. of Rows ....... 60000 Bin Time (s) ...... 0.1250
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Figure B.3: \? values as a function of the trial pulse period. The maximum in the x? corresponds
to the better match between the trial period and the original pulse period.

Right Ascension ... Internal time sys.. Literal
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No
Selected Columns: 1- Time; 3- Y-axis; 4- Y-error; b5- Fractional exposure;
File contains binned data.
Name of the window file (’-’ for default window) [-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10507.10031897535 (days) 2:24:27:559 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value

Epoch format is days.
Epoch[ 0.1050700000E+05] 10507 .00000

Period format is seconds.

Period[4.8091] 4.8091

Expected Cycles .. 1559.54

Default phase bins per period are: 10
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Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.30056875 (s)
Maximum Newbin No. 24953

Default Newbins per Interval are: 24953
(giving 1 Interval of 24953 Newbins)

Type INDEF to accept the default value

Number of Newbins/Interval[24953] 24953

Maximum of 1 Intvs. with 24953 Newbins of 0.300569 (s)
Default intervals per frame are: 1

Type INDEF to accept the default value

Number of Intervals/Frame[1] 1

Results from up to 1 Intvs. will be averaged in a Frame
Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT device[/XW] /xw

16 analysis results per interval

Intv 1 Start 10507 0:19:27

Ser.1 Avg 3257. Chisq 0.7471E+07 Var 0.3719E+07 Newbs. 16
Min 1177. Max 7050. expVar 7.966 Bins 52320
Folded light curve ready
PLT> 1i st
PLT> pl
PLT> cpd cen_x-3_pca_efo.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.4 we show the original data folded at the best trial period.

M.Orlandini 155



Temporal Data Analysis AY.2024/2025

CEM_X—23
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Figure B.4: The Cen X-3 pulse profile, obtained by folding the original data with the best trial
period.

B.4 Variability in the Pulse Period

Up to now we have assumed that the pulse period is constant, but this is not always true! Indeed,
many X-ray pulsars show changes of their spin period as a function of time, and this effect must
be taken into account when determining the best pulse period. We will study this effect on the
X-ray binary pulsar XTE J1946+274, observed by the Indian X-ray satellite IXAE. First, let us
find the pulse period by means of the efsearch program without any period derivative (as we
did in the previous example on Cen X-3).

orma> efsearch

efsearch 1.1 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options) [] XTE_1946+274_ixae.lc
Series 1 file 1:XTE_1946+274_ixae.lc

WARNING: Defaulting to first FITS extension

Selected FITS extensions: 1 - RATE TABLE;

Source ............ Start Time (d) .... 11723 18:03:40.786
FITS Extension .... 1 - ¢ ¢ Stop Time (d) ..... 11732 16:47:25.887
No. of Rows ....... 32469 Bin Time (s) ...... 1.020
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Right Ascension ... Internal time sys.. Converted to TJD

Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

Selected Columns: 1- Time; 2- Y-axis; 3- Y-error;

File contains binned data.

Name of the window file (’-’ for default window) [-] -

Expected Start ... 11723.75255539586 (days) 18: 3:40:786 (h:m:s:ms)
Expected Stop .... 11732.69960517328 (days) 16:47:25:887 (h:m:s:ms)

Default Epoch is: 11723.00000

Type INDEF to accept the default value

Epoch format is days.

Epoch[10507.00000] 11723.00000

Period format is seconds.
Period[4.81] 15.8

Expected Cycles .. 48925.64

Default phase bins per period are: 8
Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.98750000 (s)
Maximum Newbin No. 782811

Default Newbins per Interval are: 782811
(giving 1 Interval of 782811 Newbins)

Type INDEF to accept the default value

Number of Newbins/Interval[20000] 782811
Maximum of 1 Intvs. with 782811 Newbins of 0.987500
Default resolution is 0.1614693713E-03
Type INDEF to accept the default value

Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128
Type INDEF to accept the default value

Number of periods to search[1024] 4096

Name of output file[test] test

Do you want to plot your results?[yes] yes

Enter PGPLOT device[/xw] /xw

4096 analysis results per interval

M.Orlandini
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WARNING: Defaulting to first FITS extension
Chisq. vs. period ready

Period : 15.77 dp/dt :  0.000
Intv 1 Start 11723 18: 3:41
Ser.1 Avg 34.32 Chisq 371.3 Var 0.3849 Newbs. 16
Min 33.22 Max 35.24 expVar 0.1658E-01 Bins 32460

PLT> cpd XTE_1946+274_ixae_efs-1.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

As we can see in the top panel of Figure B.5, the result is as clean as we obtained for Cen X-3.
This is because the observation contains many interruptions due to passages through regions of
high concentration of particles (the satellite was in a polar orbit), where the X-ray instruments
have to be switched off.

Now we can run again efsearch but this time we add a pulse period derivative P = 1.9 x 10~°
s/s.

orma> efsearch dpdot=1.9e-9

efsearch 1.1 (xronosb5.22)

Ser. 1 filename +options (or @file of filenames +options) [] XTE_1946+274_ixae.lc
Series 1 file 1:XTE_1946+274_ixae.lc

WARNING: Defaulting to first FITS extension

Selected FITS extensions: 1 - RATE TABLE;

Source ............ Start Time (d) .... 11723 18:03:40.786
FITS Extension .... 1 - ¢ ¢ Stop Time (d) ..... 11732 16:47:25.887
No. of Rows ....... 32469 Bin Time (s) ...... 1.020

Right Ascension ... Internal time sys.. Converted to TJD
Declination ....... Experiment ........

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
Selected Columns: 1- Time; 2- Y-axis; 3- Y-error;
File contains binned data.

Name of the window file (’-’ for default window) [-] -

Expected Start ... 11723.75255539586 (days) 18: 3:40:786 (h:m:s:ms)

158 M.Orlandini



AY.2024/2025 Temporal Data Analysis
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Figure B.5: Pulse period search for XTE J1946+274 as observed by the Indian X-ray satellite IXAE.
The presence of many peaks is due to interruptions in the light curve. Top: search performed by
assuming a constant pulse period. Bottom: search performed by assuming a pulse period deriva-
tive of 1.9 x 1072 s/s. Note the different value of the x? in the two plots.
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Expected Stop .... 11732.69960517328 (days) 16:47:25:887 (h:m:s:ms)

Default Epoch is: 11723.00000
Type INDEF to accept the default value

Epoch format is days.
Epoch[11723.00000] 11723.00000

Period format is seconds.
Period[15.8] 15.8

Expected Cycles .. 48925.64

Default phase bins per period are: 8
Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.98750000 (s)

Maximum Newbin No. 782811

Default Newbins per Interval are: 782811
(giving 1 Interval of 782811 Newbins)

Type INDEF to accept the default value

Number of Newbins/Interval[782811] 782811

Maximum of 1 Intvs. with 782811 Newbins of 0.987500
Default resolution is 0.1614693713E-03

Type INDEF to accept the default value
Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128

Type INDEF to accept the default value

Number of periods to search[4096] 4096

Name of output file[test] test

Do you want to plot your results?[yes] yes

Enter PGPLOT devicel[/xw] /xzw

4096 analysis results per interval

WARNING: Defaulting to first FITS extension
Chisq. vs. period ready

Period : 15.77 dP/dt : 0.1900E-08
Intv 1 Start 11723 18: 3:41
Ser.1 Avg 34.32 Chisq 1259. Var 1.306 Newbs.
Min 32.20 Max 35.81 expVar 0.1658E-01 Bins
PLT> cpd XTE_1946+274_ixae_efs-2.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

(s)

16
32460
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In the bottom panel of Figure B.5 we can see the result. By comparing the two figures we can see
that the inclusion of the period derivative greatly increased the significance of the pulse period
(note the change in the x? value).
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B.5 Effect of the Orbital Motion

Because of the Doppler effect, the pulse period changes around the binary orbit. In order to
study this effect, we will determine the value of the pulse period along the orbit of Cen X-3. We
will use the efsearch program as follows:

orma> efsearch
efsearch 1.1 (xronos5.22)

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_long.lc
Series 1 file 1:cenx-3_long.1lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10510 19:57:03.562
No. of Rows ....... 1873744 Bin Time (s) ...... 0.1250

Right Ascension ... 1.70313293E+02 Internal time sys.. Converted to TJD
Declination ....... -6.06232986E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;
File contains binned data.

Name of the window file (-’ for default window) [-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10510.83129123185 (days) 19:57: 3:562 (h:m:s:ms)

Default Epoch is: 10507.00000
Type INDEF to accept the default value

Epoch format is days.
Epoch[10507.00000] 10507.00000

Period format is seconds.
Period[4.8] 4.81

Expected Cycles .. 68577.13

Default phase bins per period are: 8
Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 16

Newbin Time ...... 0.30062500 (s)
Maximum Newbin No. 1097235
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Default Newbins per Interval are: 1097235
(giving 1 Interval of 1097235 Newbins)
Type INDEF to accept the default value

Number of Newbins/Interval[25000] 20000

Maximum of 55 Intvs. with 20000 Newbins of 0.300625 (s)
Default resolution is 0.1924000000E-02

Type INDEF to accept the default value
Resolution for period search value or neg. power of 2[0.0001] 0.0001
Default number of periods is 128

Type INDEF to accept the default value
Number of periods to search[4096] 1024
Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT devicel/xw] /xzw

1024 analysis results per interval

Period : 4.809 dP/dt :  0.000
Intv 1 Start 10507 0:19:27
Ser.1 Avg 2811. Chisq 0.4935E+07 Var 0.2746E+07 Newbs. 16
Min 1041. Max 6049. expVar 8.901 Bins 40420
Period : 4.808 dP/dt : 0.000
Intv 2  Start 10507 1:59:40
Ser.1 Avg 4811. Chisq 0.9896E+07 Var 0.8375E+07 Newbs. 16
Min 1681. Max 0.1036E+0Ob5expVar 13.56 Bins 45412
Period : 4.808 dpP/dt : 0.000
Intv 3 Start 10507 3:39:52
Ser.1 Avg 4849. Chisq 0.1039E+08  Var 0.8569E+07 Newbs. 16
Min 1700. Max 0.1064E+0O5expVar 13.19 Bins 47076
Period : 4.807 dP/dt : 0.000
Intv 4 Start 10507 5:20: 5
Ser.1 Avg 5051. Chisq 0.1067E+08  Var 0.9123E+07 Newbs. 16
Min 1802. Max 0.1105E+0O5expVar 13.73 Bins 47076
Period : 4.807 dP/dt :  0.000
Intv 5 Start 10507 7: 0:17
Ser.1 Avg 5068. Chisq 0.1069E+08 Var 0.9063E+07 Newbs. 16
Min 1819. Max 0.1090E+O5expVar 13.57 Bins 47780
Period : 4.808 dp/dt :  0.000

Intv 6 Start 10507 8:40:30
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Ser.1

Period :
Intv
Ser.1

Period :
Intv
Ser.1

Period :
Intv
Ser.1

Period :
Intv 10
Ser.1

Period :
Intv 11
Ser.1

Period :
Intv 12
Ser.1

Period :
Intv 13
Ser.1

Period :
Intv 14
Ser.1

Period :
Intv 15
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Avg
Min

4.808
Start
Avg
Min

4.809
Start
Avg
Min

4.810
Start
Avg
Min

4.811
Start
Avg
Min

4.813
Start
Avg
Min

4.814
Start
Avg
Min

4.816
Start
Avg
Min

4.817
Start
Avg
Min

4.818
Start

4920.
1758.

dp/dt :
10507 10:

4620.
1668.

dp/dt :
10507 12:

3982.
1430.

dP/dt :
10507 14:

4611.
1706.

dr/dt :
10507 16:

5124.
1940.

dp/dt :
10507 17:

5133.
2003.

dpP/dt :
10507 19:

4877 .
1915.

dp/dt :
10507 21:

4409.
1680.

dr/dt :
10507 22:

4307 .
1636.

dp/dt :
10508 O:

20

21:

43:

23

44 .

24 .

Chisq
Max

0.000

142

Chisq
Max

0.000

:55

Chisq
Max

0.000
19
Chisq
Max

0.000

:32

Chisq
Max

0.000
27
Chisq
Max

0.000

140

Chisq
Max

0.000

:52

Chisq
Max

0.000
5
Chisq
Max

0.000
17

0.9356E+07  Var
0.1077E+05expVar

0.7100E+07  Var
0.1007E+05expVar

0.5378E+07  Var
8800. expVar
0.6309E+07  Var

0.1022E+05expVar

0.6912E+07  Var
0.1117E+05expVar

0.6841E+07 Var
0.1091E+05expVar

0.6890E+07  Var
0.1059E+05expVar

0.6427E+07
9673.

Var
expVar

0.7132E+07
9452.

Var
expVar

0.8647E+07
14.79

0.7644E+07
17.25

0.5737E+07
17.06

0.7686E+07
19.48

0.9109E+07
21.07

0.8625E+07
20.30

0.8052E+07
18.70

0.6692E+07
16.65

0.6490E+07
14.56

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

16
42596

16
34276

16
29892

16
30308

16
31132

16
32356

16
33380

16
33892

16
37860
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Ser.1

Period :
Intv 16
Ser.1

Period :
Intv 17
Ser.1

Period :
Intv 18
Ser.1

Period :
Intv 19
Ser.1

Period :
Intv 20
Ser.1

Period :
Intv 21
Ser.1

Period :
Intv 22
Ser.1

Period :
Intv 23
Ser.1

Period :
Intv 24
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Avg
Min

4.819
Start
Avg
Min

4.820
Start
Avg
Min

4.820
Start
Avg
Min

4.821
Start
Avg
Min

4.821
Start
Avg
Min

4.820
Start
Avg
Min

4.820
Start
Avg
Min

4.819
Start
Avg
Min

4.817
Start

4192.
1592.

dp/dt :
10508 2: 4:
4115.

1570.

dp/dt :
10508 3:44
3756.
1472.

dp/dt :
10508 5:24:
3931.

1464 .

dp/dt
10508 7: b5:
3773.

1428.

dp/dt :
10508 8:45:
2619.

1077.

dP/dt :
10508 10:25:
2648.

1059.

dp/dt :
10508 12:40:
3702.

1404.

dp/dt :
10508 14:20:
1814.

760.4

dp/dt :
10508 16: 1:

Chisq 0.7590E+07  Var
Max 9134. expVar
0.000
30
Chisq 0.8618E+07  Var
Max 8947. expVar
0.000
142
Chisq 0.7745E+07 Var
Max 8092. expVar
0.000
55
Chisq 0.8241E+07 Var
Max 8571. expVar
0.000
7
Chisq 0.7686E+07  Var
Max 8143. expVar
0.000
20
Chisq 0.3781E+07 Var
Max 5396. expVar
0.000
32
Chisq 0.3125E+07 Var
Max 5541. expVar
0.000
15
Chisq 0.4285E+07 Var
Max 7808. expVar
0.000
28
Chisq 0.2068E+07  Var
Max 3752. expVar
0.000
19

0.6062E+07
12.79

0.5896E+07
10.95

0.4840E+07
9.998

0.5450E+07
10.58

0.4822E+07
10.04

0.2059E+07
8.707

0.2137E+07
10.94

0.4416E+07
16.48

0.9796E+06
7.583

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

16
41956

16
48100

16
48100

16
47572

16
48100

16
38500

16
31000

16
28772

16
30620
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Ser.1

Period :
Intv 25
Ser.1

Period :
Intv 26
Ser.1

Period :
Intv 27
Ser.1

Period :
Intv 28
Ser.1

Period :
Intv 29
Ser.1

Period :
Intv 30
Ser.1

Period :
Intv 31
Ser.1

Period :
Intv 32
Ser.1

Period :
Intv 33
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Avg
Min

4.810
Start
Avg
Min

4.809
Start
Avg
Min

4.808
Start
Avg
Min

4.808
Start
Avg
Min

4.807
Start
Avg
Min

4.807
Start
Avg
Min

4.808
Start
Avg
Min

4.808
Start
Avg
Min

4.809
Start

240.9
237.1

dP/dt

10509 1:

1160.
505.8

dp/dt :
10509 3:

3668.
1318.

dP/dt :
10509 4:

3973.
1434.

dr/dt :
10509 6:

4014.
1457 .

dp/dt :
10509 8:

4025.
1468.

dpP/dt :
10509 9:

4091.
1509.

dp/dt :
10509 11:

3973.
1423.

dr/dt :
10509 13:

4129.
1509.

dp/dt :
10509 14:

22:

2:

42

23:

3:

43:

23:

44 .

Chisq 55.50 Var
Max 243.8 expVar
0.000
23
Chisq 0.1813E+07 Var
Max 2385. expVar
0.000
36
Chisq 0.7675E+07  Var
Max 7997. expVar
0.000
:48
Chisq 0.8055E+07  Var
Max 8585. expVar
0.000
1
Chisq 0.7999E+07  Var
Max 8645. expVar
0.000
13
Chisq 0.6309E+07 Var
Max 8769. expVar
0.000
26
Chisq 0.5261E+07 Var
Max 8775. expVar
0.000
38
Chisq 0.4639E+07  Var
Max 8545. expVar
0.000
:51
Chisq 0.4910E+07  Var
Max 8818. expVar
0.000
3

3.350
0.9713

0.3916E+06
3.456

0.4684E+07
9.762

0.5320E+07
10.57

0.5344E+07
10.68

0.5385E+07
13.70

0.5459E+07
16.65

0.5104E+07
17.60

0.5469E+07
17.82

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

16
31744

16
42980

16
48100

16
48100

16
48100

16
37604

16
31460

16
28900

16
29660
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Ser.1

Period :
Intv 34
Ser.1

Period :
Intv 35
Ser.1

Period :
Intv 36
Ser.1

Period :
Intv 37
Ser.1

Period :
Intv 38
Ser.1

Period :
Intv 39
Ser.1

Period :
Intv 40
Ser.1

Period :
Intv 41
Ser.1

Period :
Intv 42
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Avg
Min

4.810
Start
Avg
Min

4.811
Start
Avg
Min

4.813
Start
Avg
Min

4.814
Start
Avg
Min

4.816
Start
Avg
Min

4.817
Start
Avg
Min

4.818
Start
Avg
Min

4.819
Start
Avg
Min

4.820
Start

4220.
1536.

dp/dt :

10509 16:24:

4198.
1577.

dp/dt :

10509 18: 4:

4315.
1612.

dP/dt :
10509 19:44
4382.
1717.

dr/dt :

10509 21:24:

4596.
1841.

dp/dt :

10509 23: 5:

3995.
1610.

dpP/dt :

10510 0:45:

3683.
1466.

dp/dt :

105610 2:256:

3717.
1417.

dp/dt :
10510 4: 5
3644 .
1364.

dp/dt :

10510 5:45:

Chisq 0.5067E+07  Var
Max 9075. expVar
0.000
16
Chisq 0.5351E+07  Var
Max 8835. expVar
0.000
28
Chisq 0.5443E+07 Var
Max 9107. expVar
0.000
141
Chisq 0.6085E+07  Var
Max 9240. expVar
0.000
53
Chisq 0.6225E+07  Var
Max 9487. expVar
0.000
6
Chisq 0.6098E+07  Var
Max 8286. expVar
0.000
18
Chisq 0.6300E+07  Var
Max 7639. expVar
0.000
31
Chisq 0.7145E+07  Var
Max 7825. expVar
0.000
:43
Chisq 0.6942E+07  Var
Max 7627. expVar
0.000

56

0.5607E+07
17.75

0.5550E+07
16.61

0.5721E+07
16.81

0.6184E+07
16.30

0.6308E+07
16.20

0.4884E+07
12.81

0.4216E+07
10.71

0.4417E+07
9.892

0.4205E+07
9.697

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

Newbs.

Bins

16
30436

16
32356

16
32868

16
34404

16
36324

16
39908

16
44004

16
48100

16
48100
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Ser.1 Avg 3472. Chisq 0.5900E+07  Var 0.3822E+07 Newbs. 16
Min 1296. Max expVar 10.36 Bins 42892
Period : 4.820 dp/dt :  0.000
Intv 43 Start 10510 7:26: 8
Ser.1 Avg 3017. Chisq 0.4791E+07  Var 0.2924E+07 Newbs. 16
Min 1113. Max expVar 9.765 Bins 39544
Period : 4.821 dp/dt : 0.000
Intv 44  Start 10510 9:17:19
Ser.1 Avg 2673. Chisq 0.3327E+07  Var 0.2242E+07 Newbs. 16
Min 972.4 Max expVar 10.78 Bins 31744
Period : 4.821 dp/dt :  0.000
Intv 45  Start 10510 10:59:27
Ser.1 Avg 2861. Chisq 0.3122E+07  Var 0.2491E+07 Newbs. 16
Min 1073. Max expVar 12.77 Bins 28672
Period : 4.820 dP/dt :  0.000
Intv 46  Start 10510 12:42:23
Ser.1 Avg 2002. Chisq 0.2048E+07 Var 0.1098E+07 Newbs. 16
Min 847.6 Max expVar 8.595 Bins 29796
Period : 4.820 dP/dt : 0.000
Intv 47 Start 10510 14:22:36
Ser.1 Avg 2572. Chisq 0.2832E+07 Var 0.1904E+07 Newbs. 16
Min 1015. Max expVar 10.75 Bins 30620
Period : 4.819 dp/dt :  0.000
Intv 48 Start 10510 16: 3:27
Ser.1 Avg 2130. Chisq 0.2453E+07 Var 0.1291E+07 Newbs. 16
Min 884.5 Max expVar 8.425 Bins 32356
Period : 4.820 dp/dt :  0.000
Intv 49 Start 10510 17:43:40
Ser.1 Avg 288.3 Chisq Var 237.0 Newbs. 16
Min 268.5 Max expVar 1.123 Bins 32868
Period : 4.767 dP/dt :  0.000
Intv 50 Start 10510 19:23:52
Ser.1 Avg 223.4 Chisq Var 4.374 Newbs. 16
Min 218.5 Max expVar 1.795 Bins 15928

If we write down the value of the pulse period in each interval, and we plot them as a function
of time, we obtain the graph shown in Figure B.6.
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Figure B.6: Variation of the Cen X-3 pulse period along its orbit as due to Doppler effect.

We can reconstruct the orbital motion not only by the variation of the pulse period, but also from
the variation in the pulse arrival times. If we can measure the arrival time differences then we
can obtain a very accurate determination of the orbital parameters.

We start by folding our data with the average pulse period, and we measure as the pulse phase
of a characteristic point (for example, the peak of the pulse) changes along the orbit (see Sec-
tion 5.10 for details).

orma> efold

efold 1.1 (xronos5.22)

Number of time series for this task[1] 1

Ser. 1 filename +options (or @file of filenames +options)[] cenx-3_long.lc

Series 1 file 1:cenx-3_long.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ CEN_X-3 Start Time (d) .... 10507 00:19:27.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10510 19:57:03.562
No. of Rows ....... 1873744 Bin Time (s) ...... 0.1250

Right Ascension ... 1.70313293E+02 Internal time sys.. Converted to TJD
Declination ....... -6.06232986E+01 Experiment ........ XTE PCA
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Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;
File contains binned data.

Name of the window file (’-’ for default window) [-] -

Expected Start ... 10507.01351345407 (days) 0:19:27:562 (h:m:s:ms)
Expected Stop .... 10510.83129123185 (days) 19:57: 3:562 (h:m:s:ms)

Default Epoch is: 10507.00000

Type INDEF to accept the default value

Epoch format is days.

Epoch[10507.00000] 10507.00000

Period format is seconds.
Period[4.8091] 4.8144045

Expected Cycles .. 68514.39

Default phase bins per period are: 10
Type INDEF to accept the default value
Phasebins/Period value or neg. power of 2[16] 32

Newbin Time ...... 0.15045014 (s)
Maximum Newbin No. 2192461

Default Newbins per Interval are: 2192461
(giving 1 Interval of 2192461 Newbins)

Type INDEF to accept the default value

Number of Newbins/Interval[24953] 5000

Maximum of 439 Intvs. with 5000 Newbins of 0.150450 (s)
Default intervals per frame are: 439

Type INDEF to accept the default value

Number of Intervals/Frame[1] 1

Results from up to 1 Intvs. will be averaged in a Frame

Name of output file[test] test

Do you want to plot your results?[yes] yes

Enter PGPLOT devicel[/xw] /xw

32 analysis results per interval
Intv 1 Start 10507 0:19:27
Ser.1 Avg 967.7 Chisq 0.1712E+06  Var 0.2198E+06 Newbs. 32

Min 469.0 Max 1866. expVar 41.14 Bins 6018
Folded light curve ready
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Figure B.7: Doppler Shift of the Cen X-3 pulse profile along its orbit.

Intv 2 Start 10507 0:31:59
Ser.1 Avg 1479. Chisq 0.3264E+06  Var 0.6433E+06 Newbs. 32
Min 628.1 Max 3046. expVar 62.94 Bins 6018
Folded light curve ready
Intv 3  Start 10507 0:44:32
Ser.1 Avg 2113. Chisq 0.5022E+06  Var 0.1413E+07 Newbs. 32
Min 821.9 Max 4416. expVar 89.96 Bins 6018
Folded light curve ready

In Figure B.7 we show two pulse profiles obtained along the orbit, and their shift due to Doppler
effect.
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B.6 QuasiPeriodic Oscillations in X-ray Pulsars

A Quasi Periodic Oscillation (QPO) is revealed in a power spectrum as a broad peak (unlikely a
pure periodic signal, that is a sharp, narrow peak). We will analyze the data from a XTE/PCA
observation of the pulsar XTE J1858+038.

orma> powspec
powspec 1.0 (xronosb.22)

Ser. 1 filename +options (or @file of filenames +options) [] XTE_J1858+034_pca.lc
Series 1 file 1:XTE_J1858+034_pca.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ XTEJ1858+034 Start Time (d) .... 10868 10:43:11.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10868 11:37:03.562
No. of Rows ....... 25856 Bin Time (s) ...... 0.1250

Right Ascension ... 2.84730011E+02 Internal time sys.. Converted to TJD
Declination ....... 3.41000009E+00 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;
File contains binned data.
Name of the window file (-’ for default window) [-] -

Expected Start ... 10868.44666160222 (days) 10:43:11:562 (h:m:s:ms)
Expected Stop .... 10868.48406900962 (days) 11:37: 3:562 (h:m:s:ms)

*xxx Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time  0.12500000 (s)
for Maximum Newbin No.. 25857

Default Newbin Time is: 0.50000000 (s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.125] 0.125

Newbin Time ...... 0.12500000 (s)

Maximum Newbin No. 25857

Default Newbins per Interval are: 8192

(giving 4 Intervals of 8192 Newbins each)
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Type INDEF to accept the default value

Number of Newbins/Interval[8192] 8192

Maximum of 4 Intvs. with 8192 Newbins of 0.125000 (s)
Default intervals per frame are: 4
Type INDEF to accept the default value
Number of Intervals/Framel[7] 4

Results from up to 4 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, O none)[0] -1.05
Results will be rebinned geometrically with a series of step 1.05
Name of output file[test] test

Do you want to plot your results?[yes] yes

Enter PGPLOT devicel[/xw] /xw

4096 analysis results per intv. will be rebinned to 109

Intv 1  Start 10868 10:43:11
Ser.1 Avg 291.3 Chisq 0.1233E+05 Var 3507. Newbs. 8192
Min 112.0 Max ©552.0 expVar 2330. Bins 8192
Power spectrum ready !
Intv 2 Start 10868 11: 0:15
Ser.1 Avg 299.2 Chisq 0.1224E+05 Var 3578. Newbs. 8192
Min 104.0 Max 624.0 expVar 2394. Bins 8192
Power spectrum ready !
Intv 3 Start 10868 11:17:19
Ser.1 Avg 325.0 Chisq 0.1479E+05 Var 4696. Newbs. 8192
Min 120.0 Max 688.0 expVar 2600. Bins 8192
Power spectrum ready !
Intv 4 Start 10868 11:34:23
Ser.1 Avg 356.7 Chisq 2043. Var 4554. Newbs. 1280
Min 160.0 Max 608.0 expVar 2853. Bins 1280
Interval rejected because of window(s) in series 1 !
PLT> cpd XTE_J1858+034_pca_psd.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.8 we can clearly see a QPO at 0.1 Hz, together with the peak due to the pulse period
at221s (4.5 x 1073 Hz).
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Figure B.8: Power spectrum of the X—ray binary pulsar XTE J1858+034. Both the peak due to the
pulse period at 4.5 x 1072 Hz and a QPO at 0.1 Hz are visible.

B.7 kHz QPO in Low Mass X-ray Binaries

In order to detect QPO in the kHz range we need data at high temporal resolution. We will per-
form our analysis on a XTE/PCA observation of the Low Mass X-ray Binary 4U1728—34, that
have a time resolution of 0.125 ms.

orma> powspec
powspec 1.0 (xronosb.22)

Ser. 1 filename +options (or @file of filenames +options) [] 4U_1728-34_pcal.lc
Series 1 file 1:4U0_1728-34_pcal.lc

Selected FITS extensions: 1 - RATE TABLE;

Source ............ 1728-34 Start Time (d) .... 10129 09:34:43.562
FITS Extension .... 1 - ‘RATE ¢ Stop Time (d) ..... 10129 09:43:03.563
No. of Rows ....... 3992001 Bin Time (s) ...... 0.1250E-03

Right Ascension ... 2.62989197E+02 Internal time sys.. Converted to TJD
Declination ....... -3.38345985E+01 Experiment ........ XTE PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
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Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;
File contains binned data.
Name of the window file (’-’ for default window) [-] -

Expected Start ... 10129.39911530592 (days) 9:34:43:562 (h:m:s:ms)
Expected Stop .... 10129.40490234441 (days) 9:43: 3:563 (h:m:s:ms)

%%k Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time  0.12500000E-03 (s)
for Maximum Newbin No.. 4000002

Default Newbin Time is: 0.61125000E-01(s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.125] 0.1250E-03

Newbin Time ...... 0.12500000E-03 (s)

Maximum Newbin No. 4000002

Default Newbins per Interval are: 8192

(giving 489 Intervals of 8192 Newbins each)

Type INDEF to accept the default value

Number of Newbins/Interval[8192] 1024

Maximum of 3907 Intvs. with 1024 Newbins of 0.125000E-03 (s)
Default intervals per frame are: 3907

Type INDEF to accept the default value

Number of Intervals/Frame[4] 3907

Results from up to 3907 Intvs. will be averaged in a Frame
Rebin results? (>1 const rebin, <-1 geom. rebin, O none)[-1.05] -1.01
Results will be rebinned geometrically with a series of step 1.01

Name of output file[test] test
Do you want to plot your results?[yes] yes
Enter PGPLOT devicel[/xw] /xw

512 analysis results per intv. will be rebinned to 196
Intv 1 Start 10129 9:34:43
Ser.1 Avg 1976. Chisq 947.9 Var 0.1530E+08 Newbs. 1024

Min 0.000 Max 0.2458E+0O5expVar 0.1606E+08 Bins 1024
Power spectrum ready !
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Intv 2 Start 10129 9:34:43
Ser.1 Avg 2120. Chisq 924.4 Var 0.1589E+08 Newbs. 1024
Min 0.000 Max 0.2458E+0b5expVar 0.1720E+08 Bins 1024
Power spectrum ready !
Intv 3 Start 10129 9:34:43
Ser.1 Avg 1992. Chisq 985.8 Var 0.1530E+08 Newbs. 1024
Min 0.000 Max 0.1638E+0b5expVar 0.1606E+08 Bins 1024
Power spectrum ready !
Intv 4 Start 10129 9:34:43
Ser.1 Avg 2016. Chisq 1002. Var 0.1612E+08 Newbs. 1024
Min 0.000 Max 0.2458E+0bexpVar 0.1629E+08 Bins 1024

Power spectrum ready !
Intv 3899 Start 10129 9:43: 3
Ser.1 Avg 2264. Chisq 1020. Var 0.1801E+08 Newbs. 1024
Min 0.000 Max 0.2458E+0b5expVar 0.1828E+08 Bins 1024
Power spectrum ready !
Intv 3900 Start 10129 9:43: 3
Ser.1 Avg 2540. Chisq 129.7 Var 0.2164E+08 Newbs. 129
Min 0.000 Max 0.2458E+0b5expVar 0.2081E+08 Bins 129
Interval rejected because of window(s) in series 1 !
PLT> r y 1.8 2.5
PLT> cpd 4U_1728-34_pcal_psd.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

In Figure B.9 we show the resulting power spectrum in which the 800 Hz QPO is clearly visible.
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Figure B.9: Power spectrum of the low-mass X-ray binary 4U1728 —34 as observed by XTE/PCA.

The QPO at 800 Hz is clearly visible.

B.8 High Frequency Oscillations during Type-1 X-ray Bursts

We will search now high frequency oscillations, that sometime occur in X-ray sources. We will
analyze again high time resolution XTE/PCA data of 4U1728—34.

orma> powspec
powspec 1.0 (xronosb5.22)

Ser.
Series 1 file

Selected FITS extensions:

Source ............ 1728-34

FITS Extension .... 1 - ‘RATE ¢
No. of Rows ....... 248001
Right Ascension ... 2.62989197E+02
Declination ....... -3.38345985E+01

1 filename +options (or @file of filenames +options)[] 4U_1728-34_pca2.lc
1:4U_1728-34_pca2.1c

1 - RATE TABLE;

10129 10:01:52.562
Stop Time (d) 10129 10:02:23.563
Bin Time (s) 0.1250E-03
Internal time sys.. Converted to TJD
Experiment XTE PCA

Start Time (d)

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
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Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;
File contains binned data.
Name of the window file (’-’ for default window) [-] -

Expected Start ... 10129.41796947259 (days) 10: 1:52:562 (h:m:s:ms)
Expected Stop .... 10129.41832827033 (days) 10: 2:23:563 (h:m:s:ms)

xxxx Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time  0.12500000E-03 (s)
for Maximum Newbin No.. 248002

Default Newbin Time is: 0.38750000E-02(s) (to have 1 Intv. of 8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.1250E-03] 0.0005

Newbin Time ...... 0.50000000E-03 (s)

Maximum Newbin No. 62001

Default Newbins per Interval are: 8192

(giving 8 Intervals of 8192 Newbins each)

Type INDEF to accept the default value

Number of Newbins/Interval[1024] 4096

Maximum of 16 Intvs. with 4096 Newbins of 0.500000E-03 (s)
Default intervals per frame are: 16

Type INDEF to accept the default value

Number of Intervals/Frame[3907] 1

Results from up to 1 Intvs. will be averaged in a Frame

Rebin results? (>1 const rebin, <-1 geom. rebin, O none)[-1.01] 0

Name of output file[test] test

Do you want to plot your results?[yes] yes

Enter PGPLOT devicel[/xw] /xw

2048 analysis results per interval

Intv 1 Start 10129 10: 1:52
Ser.1 Avg 0.2032E+05 Chisq 4556. Var 0.4536E+08 Newbs. 4096
Min 0.000 Max 0.4710E+O5expVar 0.4079E+08 Bins 16384
Power spectrum ready !
PLT> cpd 4U_1728-34_pca2_psd_1.ps/cps
PLT> pl
PLT> cpd /xw
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PLT> q

Intv 2 Start 10129 10: 1:54
Ser.1 Avg 0.1371E+05 Chisq 4218. Var 0.2844E+08 Newbs. 4096
Min 0.000 Max 0.3482E+0O5expVar 0.2753E+08 Bins 16384
Power spectrum ready !
PLT> cpd 4U_1728-34_pca2_psd_2.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

Intv 3 Start 10129 10: 1:56
Ser.1 Avg 9584. Chisq 4319. Var 0.2048E+08 Newbs. 4096
Min 0.000 Max 0.2867E+0b5expVar 0.1925E+08 Bins 16384
Power spectrum ready !
PLT> cpd 4U_1728-34_pca2_psd_3.ps/cps
PLT> pl
PLT> cpd /xw
PLT> q

Intv 16  Start 10129 10: 2:21
Ser.1 Avg 2589. Chisq 3970. Var 0.5041E+07 Newbs. 4096
Min 0.000 Max 0.1638E+O5expVar 0.5199E+07 Bins 16384
Power spectrum ready !

Intv 16  Start 10129 10: 2:23
Ser.1 Avg 2591. Chisq 580.5 Var 0.5461E+07 Newbs. 561
Min 0.000 Max 0.1229E+0bexpVar 0.5210E+07 Bins 2241
Interval rejected because of window(s) in series 1 !

We will compute the power spectrum as a function of time, in order to see how the strength of
the oscillation varies. In Figure B.10 we show the peak of the oscillation at 360 Hz observed in
the third frame (out of a total of 16).
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Figure B.10: Four consecutive power spectra of the low-mass X-ray binary 4U1728—34 as ob-
served by XTE/PCA. The ~360 Hz oscillation is clearly visible and variable.
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